Comparing the Efficacy of Fine-Tuning and Meta-Learning for Few-Shot Policy Imitation

Massimiliano Patacchiola, Mingfei Sun, Katja Hofmann, Richard E. Turner
Proceedings of The 2nd Conference on Lifelong Learning Agents, PMLR 232:878-908, 2023.

Abstract

In this paper we explore few-shot imitation learning for control problems, which involves learning to imitate a target policy by accessing a limited set of offline rollouts. This setting has been relatively under-explored despite its relevance to robotics and control applications. State-of-the-art methods developed to tackle few-shot imitation rely on meta-learning, which is expensive to train as it requires access to a distribution over tasks (rollouts from many target policies and variations of the base environment). Given this limitation we investigate an alternative approach, fine-tuning, a family of methods that pretrain on a single dataset and then fine-tune on unseen domain-specific data. Recent work has shown that fine-tuners outperform meta-learners in few-shot image classification tasks, especially when the data is out-of-domain. Here we evaluate to what extent this is true for control problems, proposing a simple yet effective baseline which relies on two stages: (i) training a base policy online via reinforcement learning (e.g. Soft Actor-Critic) on a single base environment, (ii) fine-tuning the base policy via behavioral cloning on a few offline rollouts of the target policy. Despite its simplicity this baseline is competitive with meta-learning methods on a variety of conditions and is able to imitate target policies trained on unseen variations of the original environment. Importantly, the proposed approach is practical and easy to implement, as it does not need any complex meta-training protocol. As a further contribution, we release an open source dataset called iMuJoCo (iMitation MuJoCo) consisting of 154 variants of popular OpenAI-Gym MuJoCo environments with associated pretrained target policies and rollouts, which can be used by the community to study few-shot imitation learning and offline reinforcement learning.

Cite this Paper


BibTeX
@InProceedings{pmlr-v232-patacchiola23a, title = {Comparing the Efficacy of Fine-Tuning and Meta-Learning for Few-Shot Policy Imitation}, author = {Patacchiola, Massimiliano and Sun, Mingfei and Hofmann, Katja and Turner, Richard E.}, booktitle = {Proceedings of The 2nd Conference on Lifelong Learning Agents}, pages = {878--908}, year = {2023}, editor = {Chandar, Sarath and Pascanu, Razvan and Sedghi, Hanie and Precup, Doina}, volume = {232}, series = {Proceedings of Machine Learning Research}, month = {22--25 Aug}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v232/patacchiola23a/patacchiola23a.pdf}, url = {https://proceedings.mlr.press/v232/patacchiola23a.html}, abstract = {In this paper we explore few-shot imitation learning for control problems, which involves learning to imitate a target policy by accessing a limited set of offline rollouts. This setting has been relatively under-explored despite its relevance to robotics and control applications. State-of-the-art methods developed to tackle few-shot imitation rely on meta-learning, which is expensive to train as it requires access to a distribution over tasks (rollouts from many target policies and variations of the base environment). Given this limitation we investigate an alternative approach, fine-tuning, a family of methods that pretrain on a single dataset and then fine-tune on unseen domain-specific data. Recent work has shown that fine-tuners outperform meta-learners in few-shot image classification tasks, especially when the data is out-of-domain. Here we evaluate to what extent this is true for control problems, proposing a simple yet effective baseline which relies on two stages: (i) training a base policy online via reinforcement learning (e.g. Soft Actor-Critic) on a single base environment, (ii) fine-tuning the base policy via behavioral cloning on a few offline rollouts of the target policy. Despite its simplicity this baseline is competitive with meta-learning methods on a variety of conditions and is able to imitate target policies trained on unseen variations of the original environment. Importantly, the proposed approach is practical and easy to implement, as it does not need any complex meta-training protocol. As a further contribution, we release an open source dataset called iMuJoCo (iMitation MuJoCo) consisting of 154 variants of popular OpenAI-Gym MuJoCo environments with associated pretrained target policies and rollouts, which can be used by the community to study few-shot imitation learning and offline reinforcement learning.} }
Endnote
%0 Conference Paper %T Comparing the Efficacy of Fine-Tuning and Meta-Learning for Few-Shot Policy Imitation %A Massimiliano Patacchiola %A Mingfei Sun %A Katja Hofmann %A Richard E. Turner %B Proceedings of The 2nd Conference on Lifelong Learning Agents %C Proceedings of Machine Learning Research %D 2023 %E Sarath Chandar %E Razvan Pascanu %E Hanie Sedghi %E Doina Precup %F pmlr-v232-patacchiola23a %I PMLR %P 878--908 %U https://proceedings.mlr.press/v232/patacchiola23a.html %V 232 %X In this paper we explore few-shot imitation learning for control problems, which involves learning to imitate a target policy by accessing a limited set of offline rollouts. This setting has been relatively under-explored despite its relevance to robotics and control applications. State-of-the-art methods developed to tackle few-shot imitation rely on meta-learning, which is expensive to train as it requires access to a distribution over tasks (rollouts from many target policies and variations of the base environment). Given this limitation we investigate an alternative approach, fine-tuning, a family of methods that pretrain on a single dataset and then fine-tune on unseen domain-specific data. Recent work has shown that fine-tuners outperform meta-learners in few-shot image classification tasks, especially when the data is out-of-domain. Here we evaluate to what extent this is true for control problems, proposing a simple yet effective baseline which relies on two stages: (i) training a base policy online via reinforcement learning (e.g. Soft Actor-Critic) on a single base environment, (ii) fine-tuning the base policy via behavioral cloning on a few offline rollouts of the target policy. Despite its simplicity this baseline is competitive with meta-learning methods on a variety of conditions and is able to imitate target policies trained on unseen variations of the original environment. Importantly, the proposed approach is practical and easy to implement, as it does not need any complex meta-training protocol. As a further contribution, we release an open source dataset called iMuJoCo (iMitation MuJoCo) consisting of 154 variants of popular OpenAI-Gym MuJoCo environments with associated pretrained target policies and rollouts, which can be used by the community to study few-shot imitation learning and offline reinforcement learning.
APA
Patacchiola, M., Sun, M., Hofmann, K. & Turner, R.E.. (2023). Comparing the Efficacy of Fine-Tuning and Meta-Learning for Few-Shot Policy Imitation. Proceedings of The 2nd Conference on Lifelong Learning Agents, in Proceedings of Machine Learning Research 232:878-908 Available from https://proceedings.mlr.press/v232/patacchiola23a.html.

Related Material