Bipartite Matching in Massive Graphs: A Tight Analysis of EDCS

Amir Azarmehr, Soheil Behnezhad, Mohammad Roghani
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:2159-2167, 2024.

Abstract

Maximum matching is one of the most fundamental combinatorial optimization problems with applications in various contexts such as balanced clustering, data mining, resource allocation, and online advertisement. In many of these applications, the input graph is massive. The sheer size of these inputs makes it impossible to store the whole graph in the memory of a single machine and process it there. Graph sparsification has been an extremely powerful tool to alleviate this problem. In this paper, we study a highly successful and versatile sparsifier for the matching problem: the edge-degree constrained subgraph (EDCS) introduced first by Bernstein & Stein 2015 The EDCS has a parameter $\beta \geq 2$ which controls the density of the sparsifier. It has been shown through various proofs in the literature that by picking a subgraph with $O(n\beta)$ edges, the EDCS includes a matching of size at least $2/3-O(1/\beta)$ times the maximum matching size. As such, by increasing $\beta$ the approximation ratio of EDCS gets closer and closer to $2/3$. In this paper, we propose a new approach for analyzing the approximation ratio of EDCS. Our analysis is tight for any value of $\beta$. Namely, we pinpoint the precise approximation ratio of EDCS for any sparsity parameter $\beta$. Our analysis reveals that one does not necessarily need to increase $\beta$ to improve approximation, as suggested by previous analysis. In particular, the best choice turns out to be $\beta = 6$, which achieves an approximation ratio of $.677$! This is arguably surprising as it is even better than $2/3 \sim .666$, the bound that was widely believed to be the limit for EDCS.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-azarmehr24a, title = {Bipartite Matching in Massive Graphs: A Tight Analysis of {EDCS}}, author = {Azarmehr, Amir and Behnezhad, Soheil and Roghani, Mohammad}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {2159--2167}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/azarmehr24a/azarmehr24a.pdf}, url = {https://proceedings.mlr.press/v235/azarmehr24a.html}, abstract = {Maximum matching is one of the most fundamental combinatorial optimization problems with applications in various contexts such as balanced clustering, data mining, resource allocation, and online advertisement. In many of these applications, the input graph is massive. The sheer size of these inputs makes it impossible to store the whole graph in the memory of a single machine and process it there. Graph sparsification has been an extremely powerful tool to alleviate this problem. In this paper, we study a highly successful and versatile sparsifier for the matching problem: the edge-degree constrained subgraph (EDCS) introduced first by Bernstein & Stein 2015 The EDCS has a parameter $\beta \geq 2$ which controls the density of the sparsifier. It has been shown through various proofs in the literature that by picking a subgraph with $O(n\beta)$ edges, the EDCS includes a matching of size at least $2/3-O(1/\beta)$ times the maximum matching size. As such, by increasing $\beta$ the approximation ratio of EDCS gets closer and closer to $2/3$. In this paper, we propose a new approach for analyzing the approximation ratio of EDCS. Our analysis is tight for any value of $\beta$. Namely, we pinpoint the precise approximation ratio of EDCS for any sparsity parameter $\beta$. Our analysis reveals that one does not necessarily need to increase $\beta$ to improve approximation, as suggested by previous analysis. In particular, the best choice turns out to be $\beta = 6$, which achieves an approximation ratio of $.677$! This is arguably surprising as it is even better than $2/3 \sim .666$, the bound that was widely believed to be the limit for EDCS.} }
Endnote
%0 Conference Paper %T Bipartite Matching in Massive Graphs: A Tight Analysis of EDCS %A Amir Azarmehr %A Soheil Behnezhad %A Mohammad Roghani %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-azarmehr24a %I PMLR %P 2159--2167 %U https://proceedings.mlr.press/v235/azarmehr24a.html %V 235 %X Maximum matching is one of the most fundamental combinatorial optimization problems with applications in various contexts such as balanced clustering, data mining, resource allocation, and online advertisement. In many of these applications, the input graph is massive. The sheer size of these inputs makes it impossible to store the whole graph in the memory of a single machine and process it there. Graph sparsification has been an extremely powerful tool to alleviate this problem. In this paper, we study a highly successful and versatile sparsifier for the matching problem: the edge-degree constrained subgraph (EDCS) introduced first by Bernstein & Stein 2015 The EDCS has a parameter $\beta \geq 2$ which controls the density of the sparsifier. It has been shown through various proofs in the literature that by picking a subgraph with $O(n\beta)$ edges, the EDCS includes a matching of size at least $2/3-O(1/\beta)$ times the maximum matching size. As such, by increasing $\beta$ the approximation ratio of EDCS gets closer and closer to $2/3$. In this paper, we propose a new approach for analyzing the approximation ratio of EDCS. Our analysis is tight for any value of $\beta$. Namely, we pinpoint the precise approximation ratio of EDCS for any sparsity parameter $\beta$. Our analysis reveals that one does not necessarily need to increase $\beta$ to improve approximation, as suggested by previous analysis. In particular, the best choice turns out to be $\beta = 6$, which achieves an approximation ratio of $.677$! This is arguably surprising as it is even better than $2/3 \sim .666$, the bound that was widely believed to be the limit for EDCS.
APA
Azarmehr, A., Behnezhad, S. & Roghani, M.. (2024). Bipartite Matching in Massive Graphs: A Tight Analysis of EDCS. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:2159-2167 Available from https://proceedings.mlr.press/v235/azarmehr24a.html.

Related Material