Analyzing $D^α$ seeding for $k$-means

Etienne Bamas, Sai Ganesh Nagarajan, Ola Svensson
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:2673-2699, 2024.

Abstract

One of the most popular clustering algorithms is the celebrated $D^\alpha$ seeding algorithm (also know as $k$-means++ when $\alpha=2$) by Arthur and Vassilvitskii (2007), who showed that it guarantees in expectation an $O(2^{2\alpha}\cdot \log k)$-approximate solution to the ($k$,$\alpha$)-clustering cost (where distances are raised to the power $\alpha$) for any $\alpha\ge 1$. More recently, Balcan, Dick, and White (2018) observed experimentally that using $D^\alpha$ seeding with $\alpha>2$ can lead to a better solution with respect to the standard $k$-means objective (i.e. the $(k,2)$-clustering cost). In this paper, we provide a rigorous understanding of this phenomenon. For any $\alpha>2$, we show that $D^\alpha$ seeding guarantees in expectation an approximation factor of \begin{equation*} O_\alpha \left(\left(\frac{\sigma_{\textrm{max}}}{\sigma_{\textrm{min}}}\right)^{2-4/\alpha}\cdot (g_\alpha \cdot \min \lbrace\ell,\log k\rbrace)^{2/\alpha}\right) \end{equation*} with respect to the standard $k$-means cost of any underlying clustering; where $g_\alpha$ is a parameter capturing the concentration of the points in each cluster, $\sigma_{\textrm{max}}$ and $\sigma_{\textrm{min}}$ are the maximum and minimum standard deviation of the clusters around their center, and $\ell$ is the number of distinct mixing weights in the underlying clustering (after rounding them to the nearest power of $2$). For instance, if the underlying clustering is defined by a mixture of $k$ Gaussian distributions with equal cluster variance (up to a constant-factor), then our result implies that: (1) if there are a constant number of mixing weights, any constant $\alpha>2$ yields a constant-factor approximation; (2) if the mixing weights are arbitrary, any constant $\alpha>2$ yields an $O\left(\log^{2/\alpha}k\right)$-approximation, and $\alpha=\Theta(\log\log k)$ yields an $O(\log\log k)^3$-approximation. We complement these results by some lower bounds showing that the dependency on $g_\alpha$ and $\sigma_{\textrm{max}}/\sigma_{\textrm{min}}$ is tight. Finally, we provide an experimental validation of the effects of the aforementioned parameters when using $D^\alpha$ seeding.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-bamas24a, title = {Analyzing $D^α$ seeding for $k$-means}, author = {Bamas, Etienne and Nagarajan, Sai Ganesh and Svensson, Ola}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {2673--2699}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/bamas24a/bamas24a.pdf}, url = {https://proceedings.mlr.press/v235/bamas24a.html}, abstract = {One of the most popular clustering algorithms is the celebrated $D^\alpha$ seeding algorithm (also know as $k$-means++ when $\alpha=2$) by Arthur and Vassilvitskii (2007), who showed that it guarantees in expectation an $O(2^{2\alpha}\cdot \log k)$-approximate solution to the ($k$,$\alpha$)-clustering cost (where distances are raised to the power $\alpha$) for any $\alpha\ge 1$. More recently, Balcan, Dick, and White (2018) observed experimentally that using $D^\alpha$ seeding with $\alpha>2$ can lead to a better solution with respect to the standard $k$-means objective (i.e. the $(k,2)$-clustering cost). In this paper, we provide a rigorous understanding of this phenomenon. For any $\alpha>2$, we show that $D^\alpha$ seeding guarantees in expectation an approximation factor of \begin{equation*} O_\alpha \left(\left(\frac{\sigma_{\textrm{max}}}{\sigma_{\textrm{min}}}\right)^{2-4/\alpha}\cdot (g_\alpha \cdot \min \lbrace\ell,\log k\rbrace)^{2/\alpha}\right) \end{equation*} with respect to the standard $k$-means cost of any underlying clustering; where $g_\alpha$ is a parameter capturing the concentration of the points in each cluster, $\sigma_{\textrm{max}}$ and $\sigma_{\textrm{min}}$ are the maximum and minimum standard deviation of the clusters around their center, and $\ell$ is the number of distinct mixing weights in the underlying clustering (after rounding them to the nearest power of $2$). For instance, if the underlying clustering is defined by a mixture of $k$ Gaussian distributions with equal cluster variance (up to a constant-factor), then our result implies that: (1) if there are a constant number of mixing weights, any constant $\alpha>2$ yields a constant-factor approximation; (2) if the mixing weights are arbitrary, any constant $\alpha>2$ yields an $O\left(\log^{2/\alpha}k\right)$-approximation, and $\alpha=\Theta(\log\log k)$ yields an $O(\log\log k)^3$-approximation. We complement these results by some lower bounds showing that the dependency on $g_\alpha$ and $\sigma_{\textrm{max}}/\sigma_{\textrm{min}}$ is tight. Finally, we provide an experimental validation of the effects of the aforementioned parameters when using $D^\alpha$ seeding.} }
Endnote
%0 Conference Paper %T Analyzing $D^α$ seeding for $k$-means %A Etienne Bamas %A Sai Ganesh Nagarajan %A Ola Svensson %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-bamas24a %I PMLR %P 2673--2699 %U https://proceedings.mlr.press/v235/bamas24a.html %V 235 %X One of the most popular clustering algorithms is the celebrated $D^\alpha$ seeding algorithm (also know as $k$-means++ when $\alpha=2$) by Arthur and Vassilvitskii (2007), who showed that it guarantees in expectation an $O(2^{2\alpha}\cdot \log k)$-approximate solution to the ($k$,$\alpha$)-clustering cost (where distances are raised to the power $\alpha$) for any $\alpha\ge 1$. More recently, Balcan, Dick, and White (2018) observed experimentally that using $D^\alpha$ seeding with $\alpha>2$ can lead to a better solution with respect to the standard $k$-means objective (i.e. the $(k,2)$-clustering cost). In this paper, we provide a rigorous understanding of this phenomenon. For any $\alpha>2$, we show that $D^\alpha$ seeding guarantees in expectation an approximation factor of \begin{equation*} O_\alpha \left(\left(\frac{\sigma_{\textrm{max}}}{\sigma_{\textrm{min}}}\right)^{2-4/\alpha}\cdot (g_\alpha \cdot \min \lbrace\ell,\log k\rbrace)^{2/\alpha}\right) \end{equation*} with respect to the standard $k$-means cost of any underlying clustering; where $g_\alpha$ is a parameter capturing the concentration of the points in each cluster, $\sigma_{\textrm{max}}$ and $\sigma_{\textrm{min}}$ are the maximum and minimum standard deviation of the clusters around their center, and $\ell$ is the number of distinct mixing weights in the underlying clustering (after rounding them to the nearest power of $2$). For instance, if the underlying clustering is defined by a mixture of $k$ Gaussian distributions with equal cluster variance (up to a constant-factor), then our result implies that: (1) if there are a constant number of mixing weights, any constant $\alpha>2$ yields a constant-factor approximation; (2) if the mixing weights are arbitrary, any constant $\alpha>2$ yields an $O\left(\log^{2/\alpha}k\right)$-approximation, and $\alpha=\Theta(\log\log k)$ yields an $O(\log\log k)^3$-approximation. We complement these results by some lower bounds showing that the dependency on $g_\alpha$ and $\sigma_{\textrm{max}}/\sigma_{\textrm{min}}$ is tight. Finally, we provide an experimental validation of the effects of the aforementioned parameters when using $D^\alpha$ seeding.
APA
Bamas, E., Nagarajan, S.G. & Svensson, O.. (2024). Analyzing $D^α$ seeding for $k$-means. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:2673-2699 Available from https://proceedings.mlr.press/v235/bamas24a.html.

Related Material