Unsupervised Representation Learning of Brain Activity via Bridging Voxel Activity and Functional Connectivity

Ali Behrouz, Parsa Delavari, Farnoosh Hashemi
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:3347-3381, 2024.

Abstract

Effective brain representation learning is a key step toward the understanding of cognitive processes and diagnosis of neurological diseases/disorders. Existing studies have focused on either (1) voxel-level activity, where only a single weight relating the voxel activity to the task (i.e., aggregation of voxel activity over a time window) is considered, missing their temporal dynamics, or (2) functional connectivity of the brain in the level of region of interests, missing voxel-level activities. We bridge this gap and design BrainMixer, an unsupervised learning framework that effectively utilizes both functional connectivity and associated time series of voxels to learn voxel-level representation in an unsupervised manner. BrainMixer employs two simple yet effective MLP-based encoders to simultaneously learn the dynamics of voxel-level signals and their functional correlations. To encode voxel activity, BrainMixer fuses information across both time and voxel dimensions via a dynamic attention mechanism. To learn the structure of the functional connectivity, BrainMixer presents a temporal graph patching and encodes each patch by combining its nodes’ features via a new adaptive temporal pooling. Our experiments show that BrainMixer attains outstanding performance and outperforms 14 baselines in different downstream tasks and setups.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-behrouz24a, title = {Unsupervised Representation Learning of Brain Activity via Bridging Voxel Activity and Functional Connectivity}, author = {Behrouz, Ali and Delavari, Parsa and Hashemi, Farnoosh}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {3347--3381}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/behrouz24a/behrouz24a.pdf}, url = {https://proceedings.mlr.press/v235/behrouz24a.html}, abstract = {Effective brain representation learning is a key step toward the understanding of cognitive processes and diagnosis of neurological diseases/disorders. Existing studies have focused on either (1) voxel-level activity, where only a single weight relating the voxel activity to the task (i.e., aggregation of voxel activity over a time window) is considered, missing their temporal dynamics, or (2) functional connectivity of the brain in the level of region of interests, missing voxel-level activities. We bridge this gap and design BrainMixer, an unsupervised learning framework that effectively utilizes both functional connectivity and associated time series of voxels to learn voxel-level representation in an unsupervised manner. BrainMixer employs two simple yet effective MLP-based encoders to simultaneously learn the dynamics of voxel-level signals and their functional correlations. To encode voxel activity, BrainMixer fuses information across both time and voxel dimensions via a dynamic attention mechanism. To learn the structure of the functional connectivity, BrainMixer presents a temporal graph patching and encodes each patch by combining its nodes’ features via a new adaptive temporal pooling. Our experiments show that BrainMixer attains outstanding performance and outperforms 14 baselines in different downstream tasks and setups.} }
Endnote
%0 Conference Paper %T Unsupervised Representation Learning of Brain Activity via Bridging Voxel Activity and Functional Connectivity %A Ali Behrouz %A Parsa Delavari %A Farnoosh Hashemi %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-behrouz24a %I PMLR %P 3347--3381 %U https://proceedings.mlr.press/v235/behrouz24a.html %V 235 %X Effective brain representation learning is a key step toward the understanding of cognitive processes and diagnosis of neurological diseases/disorders. Existing studies have focused on either (1) voxel-level activity, where only a single weight relating the voxel activity to the task (i.e., aggregation of voxel activity over a time window) is considered, missing their temporal dynamics, or (2) functional connectivity of the brain in the level of region of interests, missing voxel-level activities. We bridge this gap and design BrainMixer, an unsupervised learning framework that effectively utilizes both functional connectivity and associated time series of voxels to learn voxel-level representation in an unsupervised manner. BrainMixer employs two simple yet effective MLP-based encoders to simultaneously learn the dynamics of voxel-level signals and their functional correlations. To encode voxel activity, BrainMixer fuses information across both time and voxel dimensions via a dynamic attention mechanism. To learn the structure of the functional connectivity, BrainMixer presents a temporal graph patching and encodes each patch by combining its nodes’ features via a new adaptive temporal pooling. Our experiments show that BrainMixer attains outstanding performance and outperforms 14 baselines in different downstream tasks and setups.
APA
Behrouz, A., Delavari, P. & Hashemi, F.. (2024). Unsupervised Representation Learning of Brain Activity via Bridging Voxel Activity and Functional Connectivity. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:3347-3381 Available from https://proceedings.mlr.press/v235/behrouz24a.html.

Related Material