Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling

Raunaq Bhirangi, Chenyu Wang, Venkatesh Pattabiraman, Carmel Majidi, Abhinav Gupta, Tess Hellebrekers, Lerrel Pinto
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:3795-3816, 2024.

Abstract

Reasoning from sequences of raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics. These problems often involve using long sequences of raw sensor data (e.g. magnetometers, piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measurements). While classical approaches are powerful for locally-linear prediction problems, they often fall short when using real-world sensors. These sensors are typically non-linear, are affected by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems, the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels requires expensive equipment. In this work, we present Hierarchical State-Space models (HiSS), a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured state-space models on top of each other to create a temporal hierarchy. Across six real-world sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement, HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4, and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code, datasets and videos can be found on https://hiss-csp.github.io.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-bhirangi24a, title = {Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling}, author = {Bhirangi, Raunaq and Wang, Chenyu and Pattabiraman, Venkatesh and Majidi, Carmel and Gupta, Abhinav and Hellebrekers, Tess and Pinto, Lerrel}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {3795--3816}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/bhirangi24a/bhirangi24a.pdf}, url = {https://proceedings.mlr.press/v235/bhirangi24a.html}, abstract = {Reasoning from sequences of raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics. These problems often involve using long sequences of raw sensor data (e.g. magnetometers, piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measurements). While classical approaches are powerful for locally-linear prediction problems, they often fall short when using real-world sensors. These sensors are typically non-linear, are affected by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems, the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels requires expensive equipment. In this work, we present Hierarchical State-Space models (HiSS), a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured state-space models on top of each other to create a temporal hierarchy. Across six real-world sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement, HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4, and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code, datasets and videos can be found on https://hiss-csp.github.io.} }
Endnote
%0 Conference Paper %T Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling %A Raunaq Bhirangi %A Chenyu Wang %A Venkatesh Pattabiraman %A Carmel Majidi %A Abhinav Gupta %A Tess Hellebrekers %A Lerrel Pinto %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-bhirangi24a %I PMLR %P 3795--3816 %U https://proceedings.mlr.press/v235/bhirangi24a.html %V 235 %X Reasoning from sequences of raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics. These problems often involve using long sequences of raw sensor data (e.g. magnetometers, piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measurements). While classical approaches are powerful for locally-linear prediction problems, they often fall short when using real-world sensors. These sensors are typically non-linear, are affected by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems, the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels requires expensive equipment. In this work, we present Hierarchical State-Space models (HiSS), a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured state-space models on top of each other to create a temporal hierarchy. Across six real-world sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement, HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4, and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code, datasets and videos can be found on https://hiss-csp.github.io.
APA
Bhirangi, R., Wang, C., Pattabiraman, V., Majidi, C., Gupta, A., Hellebrekers, T. & Pinto, L.. (2024). Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:3795-3816 Available from https://proceedings.mlr.press/v235/bhirangi24a.html.

Related Material