How Smooth Is Attention?

Valérie Castin, Pierre Ablin, Gabriel Peyré
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:5817-5840, 2024.

Abstract

Self-attention and masked self-attention are at the heart of Transformers’ outstanding success. Still, our mathematical understanding of attention, in particular of its Lipschitz properties — which are key when it comes to analyzing robustness and expressive power — is incomplete. We provide a detailed study of the Lipschitz constant of self-attention in several practical scenarios, discussing the impact of the sequence length $n$ and layer normalization on the local Lipschitz constant of both unmasked and masked self-attention. In particular, we show that for inputs of length $n$ in any compact set, the Lipschitz constant of self-attention is bounded by $\sqrt{n}$ up to a constant factor and that this bound is tight for reasonable sequence lengths. When the sequence length $n$ is too large for the previous bound to be tight, which we refer to as the mean-field regime, we provide an upper bound and a matching lower bound which are independent of $n$. Our mean-field framework for masked self-attention is novel and of independent interest. Our experiments on pretrained and randomly initialized BERT and GPT-2 support our theoretical findings.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-castin24a, title = {How Smooth Is Attention?}, author = {Castin, Val\'{e}rie and Ablin, Pierre and Peyr\'{e}, Gabriel}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {5817--5840}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/castin24a/castin24a.pdf}, url = {https://proceedings.mlr.press/v235/castin24a.html}, abstract = {Self-attention and masked self-attention are at the heart of Transformers’ outstanding success. Still, our mathematical understanding of attention, in particular of its Lipschitz properties — which are key when it comes to analyzing robustness and expressive power — is incomplete. We provide a detailed study of the Lipschitz constant of self-attention in several practical scenarios, discussing the impact of the sequence length $n$ and layer normalization on the local Lipschitz constant of both unmasked and masked self-attention. In particular, we show that for inputs of length $n$ in any compact set, the Lipschitz constant of self-attention is bounded by $\sqrt{n}$ up to a constant factor and that this bound is tight for reasonable sequence lengths. When the sequence length $n$ is too large for the previous bound to be tight, which we refer to as the mean-field regime, we provide an upper bound and a matching lower bound which are independent of $n$. Our mean-field framework for masked self-attention is novel and of independent interest. Our experiments on pretrained and randomly initialized BERT and GPT-2 support our theoretical findings.} }
Endnote
%0 Conference Paper %T How Smooth Is Attention? %A Valérie Castin %A Pierre Ablin %A Gabriel Peyré %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-castin24a %I PMLR %P 5817--5840 %U https://proceedings.mlr.press/v235/castin24a.html %V 235 %X Self-attention and masked self-attention are at the heart of Transformers’ outstanding success. Still, our mathematical understanding of attention, in particular of its Lipschitz properties — which are key when it comes to analyzing robustness and expressive power — is incomplete. We provide a detailed study of the Lipschitz constant of self-attention in several practical scenarios, discussing the impact of the sequence length $n$ and layer normalization on the local Lipschitz constant of both unmasked and masked self-attention. In particular, we show that for inputs of length $n$ in any compact set, the Lipschitz constant of self-attention is bounded by $\sqrt{n}$ up to a constant factor and that this bound is tight for reasonable sequence lengths. When the sequence length $n$ is too large for the previous bound to be tight, which we refer to as the mean-field regime, we provide an upper bound and a matching lower bound which are independent of $n$. Our mean-field framework for masked self-attention is novel and of independent interest. Our experiments on pretrained and randomly initialized BERT and GPT-2 support our theoretical findings.
APA
Castin, V., Ablin, P. & Peyré, G.. (2024). How Smooth Is Attention?. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:5817-5840 Available from https://proceedings.mlr.press/v235/castin24a.html.

Related Material