[edit]
How Smooth Is Attention?
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:5817-5840, 2024.
Abstract
Self-attention and masked self-attention are at the heart of Transformers’ outstanding success. Still, our mathematical understanding of attention, in particular of its Lipschitz properties — which are key when it comes to analyzing robustness and expressive power — is incomplete. We provide a detailed study of the Lipschitz constant of self-attention in several practical scenarios, discussing the impact of the sequence length n and layer normalization on the local Lipschitz constant of both unmasked and masked self-attention. In particular, we show that for inputs of length n in any compact set, the Lipschitz constant of self-attention is bounded by √n up to a constant factor and that this bound is tight for reasonable sequence lengths. When the sequence length n is too large for the previous bound to be tight, which we refer to as the mean-field regime, we provide an upper bound and a matching lower bound which are independent of n. Our mean-field framework for masked self-attention is novel and of independent interest. Our experiments on pretrained and randomly initialized BERT and GPT-2 support our theoretical findings.