Performative Prediction with Bandit Feedback: Learning through Reparameterization

Yatong Chen, Wei Tang, Chien-Ju Ho, Yang Liu
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:7298-7324, 2024.

Abstract

Performative prediction, as introduced by Perdomo et al., is a framework for studying social prediction in which the data distribution itself changes in response to the deployment of a model. Existing work in this field usually hinges on three assumptions that are easily violated in practice: that the performative risk is convex over the deployed model, that the mapping from the model to the data distribution is known to the model designer in advance, and the first-order information of the performative risk is available. In this paper, we initiate the study of performative prediction problems that do not require these assumptions. Specifically, we develop a parameterization framework that parametrizes the performative prediction objective as a function of the induced data distribution. We also develop a two-level zeroth-order optimization procedure, where the first level performs iterative optimization on the distribution parameter space, and the second level learns the model that induced a particular target distribution parameter at each iteration. Under mild conditions, this reparameterization allows us to transform the non-convex objective into a convex one and achieve provable regret guarantees. In particular, we provide a regret bound that is sublinear in the total number of performative samples taken and is only polynomial in the dimension of the model parameter.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-chen24al, title = {Performative Prediction with Bandit Feedback: Learning through Reparameterization}, author = {Chen, Yatong and Tang, Wei and Ho, Chien-Ju and Liu, Yang}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {7298--7324}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/chen24al/chen24al.pdf}, url = {https://proceedings.mlr.press/v235/chen24al.html}, abstract = {Performative prediction, as introduced by Perdomo et al., is a framework for studying social prediction in which the data distribution itself changes in response to the deployment of a model. Existing work in this field usually hinges on three assumptions that are easily violated in practice: that the performative risk is convex over the deployed model, that the mapping from the model to the data distribution is known to the model designer in advance, and the first-order information of the performative risk is available. In this paper, we initiate the study of performative prediction problems that do not require these assumptions. Specifically, we develop a parameterization framework that parametrizes the performative prediction objective as a function of the induced data distribution. We also develop a two-level zeroth-order optimization procedure, where the first level performs iterative optimization on the distribution parameter space, and the second level learns the model that induced a particular target distribution parameter at each iteration. Under mild conditions, this reparameterization allows us to transform the non-convex objective into a convex one and achieve provable regret guarantees. In particular, we provide a regret bound that is sublinear in the total number of performative samples taken and is only polynomial in the dimension of the model parameter.} }
Endnote
%0 Conference Paper %T Performative Prediction with Bandit Feedback: Learning through Reparameterization %A Yatong Chen %A Wei Tang %A Chien-Ju Ho %A Yang Liu %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-chen24al %I PMLR %P 7298--7324 %U https://proceedings.mlr.press/v235/chen24al.html %V 235 %X Performative prediction, as introduced by Perdomo et al., is a framework for studying social prediction in which the data distribution itself changes in response to the deployment of a model. Existing work in this field usually hinges on three assumptions that are easily violated in practice: that the performative risk is convex over the deployed model, that the mapping from the model to the data distribution is known to the model designer in advance, and the first-order information of the performative risk is available. In this paper, we initiate the study of performative prediction problems that do not require these assumptions. Specifically, we develop a parameterization framework that parametrizes the performative prediction objective as a function of the induced data distribution. We also develop a two-level zeroth-order optimization procedure, where the first level performs iterative optimization on the distribution parameter space, and the second level learns the model that induced a particular target distribution parameter at each iteration. Under mild conditions, this reparameterization allows us to transform the non-convex objective into a convex one and achieve provable regret guarantees. In particular, we provide a regret bound that is sublinear in the total number of performative samples taken and is only polynomial in the dimension of the model parameter.
APA
Chen, Y., Tang, W., Ho, C. & Liu, Y.. (2024). Performative Prediction with Bandit Feedback: Learning through Reparameterization. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:7298-7324 Available from https://proceedings.mlr.press/v235/chen24al.html.

Related Material