DRCT: Diffusion Reconstruction Contrastive Training towards Universal Detection of Diffusion Generated Images

Baoying Chen, Jishen Zeng, Jianquan Yang, Rui Yang
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:7621-7639, 2024.

Abstract

Diffusion models have made significant strides in visual content generation but also raised increasing demands on generated image detection. Existing detection methods have achieved considerable progress, but they usually suffer a significant decline in accuracy when detecting images generated by an unseen diffusion model. In this paper, we seek to address the generalizability of generated image detectors from the perspective of hard sample classification. The basic idea is that if a classifier can distinguish generated images that closely resemble real ones, then it can also effectively detect less similar samples, potentially even those produced by a different diffusion model. Based on this idea, we propose Diffusion Reconstruction Contrastive Learning (DRCT), a universal framework to enhance the generalizability of the existing detectors. DRCT generates hard samples by high-quality diffusion reconstruction and adopts contrastive training to guide the learning of diffusion artifacts. In addition, we have built a million-scale dataset, DRCT-2M, including 16 types diffusion models for the evaluation of generalizability of detection methods. Extensive experimental results show that detectors enhanced with DRCT achieve over a 10% accuracy improvement in cross-set tests. The code, models, and dataset will soon be available at https://github.com/beibuwandeluori/DRCT.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-chen24ay, title = {{DRCT}: Diffusion Reconstruction Contrastive Training towards Universal Detection of Diffusion Generated Images}, author = {Chen, Baoying and Zeng, Jishen and Yang, Jianquan and Yang, Rui}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {7621--7639}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/chen24ay/chen24ay.pdf}, url = {https://proceedings.mlr.press/v235/chen24ay.html}, abstract = {Diffusion models have made significant strides in visual content generation but also raised increasing demands on generated image detection. Existing detection methods have achieved considerable progress, but they usually suffer a significant decline in accuracy when detecting images generated by an unseen diffusion model. In this paper, we seek to address the generalizability of generated image detectors from the perspective of hard sample classification. The basic idea is that if a classifier can distinguish generated images that closely resemble real ones, then it can also effectively detect less similar samples, potentially even those produced by a different diffusion model. Based on this idea, we propose Diffusion Reconstruction Contrastive Learning (DRCT), a universal framework to enhance the generalizability of the existing detectors. DRCT generates hard samples by high-quality diffusion reconstruction and adopts contrastive training to guide the learning of diffusion artifacts. In addition, we have built a million-scale dataset, DRCT-2M, including 16 types diffusion models for the evaluation of generalizability of detection methods. Extensive experimental results show that detectors enhanced with DRCT achieve over a 10% accuracy improvement in cross-set tests. The code, models, and dataset will soon be available at https://github.com/beibuwandeluori/DRCT.} }
Endnote
%0 Conference Paper %T DRCT: Diffusion Reconstruction Contrastive Training towards Universal Detection of Diffusion Generated Images %A Baoying Chen %A Jishen Zeng %A Jianquan Yang %A Rui Yang %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-chen24ay %I PMLR %P 7621--7639 %U https://proceedings.mlr.press/v235/chen24ay.html %V 235 %X Diffusion models have made significant strides in visual content generation but also raised increasing demands on generated image detection. Existing detection methods have achieved considerable progress, but they usually suffer a significant decline in accuracy when detecting images generated by an unseen diffusion model. In this paper, we seek to address the generalizability of generated image detectors from the perspective of hard sample classification. The basic idea is that if a classifier can distinguish generated images that closely resemble real ones, then it can also effectively detect less similar samples, potentially even those produced by a different diffusion model. Based on this idea, we propose Diffusion Reconstruction Contrastive Learning (DRCT), a universal framework to enhance the generalizability of the existing detectors. DRCT generates hard samples by high-quality diffusion reconstruction and adopts contrastive training to guide the learning of diffusion artifacts. In addition, we have built a million-scale dataset, DRCT-2M, including 16 types diffusion models for the evaluation of generalizability of detection methods. Extensive experimental results show that detectors enhanced with DRCT achieve over a 10% accuracy improvement in cross-set tests. The code, models, and dataset will soon be available at https://github.com/beibuwandeluori/DRCT.
APA
Chen, B., Zeng, J., Yang, J. & Yang, R.. (2024). DRCT: Diffusion Reconstruction Contrastive Training towards Universal Detection of Diffusion Generated Images. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:7621-7639 Available from https://proceedings.mlr.press/v235/chen24ay.html.

Related Material