Enhancing Trajectory Prediction through Self-Supervised Waypoint Distortion Prediction

Pranav Singh Chib, Pravendra Singh
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:8403-8416, 2024.

Abstract

Trajectory prediction is an important task that involves modeling the indeterminate nature of agents to forecast future trajectories given the observed trajectory sequences. The task of predicting trajectories poses significant challenges, as agents not only move individually through time but also interact spatially. The learning of complex spatio-temporal representations stands as a fundamental challenge in trajectory prediction. To this end, we propose a novel approach called SSWDP (Self-Supervised Waypoint Distortion Prediction). We propose a simple yet highly effective self-supervised task of predicting distortion present in the observed trajectories to improve the representation learning of the model. Our approach can complement existing trajectory prediction methods. The experimental results highlight a significant improvement with relative percentage differences of 22.7%/38.9%, 33.8%/36.4%, and 16.60%/23.20% in ADE/FDE for the NBA, TrajNet++, and ETH-UCY datasets, respectively, compared to the baseline methods. Our approach also demonstrates a significant improvement over baseline methods with relative percentage differences of 76.8%/82.5% and 61.0%/36.1% in ADE/FDE for TrajNet++ and NBA datasets in distorted environments, respectively.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-chib24b, title = {Enhancing Trajectory Prediction through Self-Supervised Waypoint Distortion Prediction}, author = {Chib, Pranav Singh and Singh, Pravendra}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {8403--8416}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/chib24b/chib24b.pdf}, url = {https://proceedings.mlr.press/v235/chib24b.html}, abstract = {Trajectory prediction is an important task that involves modeling the indeterminate nature of agents to forecast future trajectories given the observed trajectory sequences. The task of predicting trajectories poses significant challenges, as agents not only move individually through time but also interact spatially. The learning of complex spatio-temporal representations stands as a fundamental challenge in trajectory prediction. To this end, we propose a novel approach called SSWDP (Self-Supervised Waypoint Distortion Prediction). We propose a simple yet highly effective self-supervised task of predicting distortion present in the observed trajectories to improve the representation learning of the model. Our approach can complement existing trajectory prediction methods. The experimental results highlight a significant improvement with relative percentage differences of 22.7%/38.9%, 33.8%/36.4%, and 16.60%/23.20% in ADE/FDE for the NBA, TrajNet++, and ETH-UCY datasets, respectively, compared to the baseline methods. Our approach also demonstrates a significant improvement over baseline methods with relative percentage differences of 76.8%/82.5% and 61.0%/36.1% in ADE/FDE for TrajNet++ and NBA datasets in distorted environments, respectively.} }
Endnote
%0 Conference Paper %T Enhancing Trajectory Prediction through Self-Supervised Waypoint Distortion Prediction %A Pranav Singh Chib %A Pravendra Singh %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-chib24b %I PMLR %P 8403--8416 %U https://proceedings.mlr.press/v235/chib24b.html %V 235 %X Trajectory prediction is an important task that involves modeling the indeterminate nature of agents to forecast future trajectories given the observed trajectory sequences. The task of predicting trajectories poses significant challenges, as agents not only move individually through time but also interact spatially. The learning of complex spatio-temporal representations stands as a fundamental challenge in trajectory prediction. To this end, we propose a novel approach called SSWDP (Self-Supervised Waypoint Distortion Prediction). We propose a simple yet highly effective self-supervised task of predicting distortion present in the observed trajectories to improve the representation learning of the model. Our approach can complement existing trajectory prediction methods. The experimental results highlight a significant improvement with relative percentage differences of 22.7%/38.9%, 33.8%/36.4%, and 16.60%/23.20% in ADE/FDE for the NBA, TrajNet++, and ETH-UCY datasets, respectively, compared to the baseline methods. Our approach also demonstrates a significant improvement over baseline methods with relative percentage differences of 76.8%/82.5% and 61.0%/36.1% in ADE/FDE for TrajNet++ and NBA datasets in distorted environments, respectively.
APA
Chib, P.S. & Singh, P.. (2024). Enhancing Trajectory Prediction through Self-Supervised Waypoint Distortion Prediction. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:8403-8416 Available from https://proceedings.mlr.press/v235/chib24b.html.

Related Material