Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters

Brian M Cho, Yaroslav Mukhin, Kyra Gan, Ivana Malenica
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:8534-8555, 2024.

Abstract

When estimating target parameters in nonparametric models with nuisance parameters, substituting the unknown nuisances with nonparametric estimators can introduce "plug-in bias." Traditional methods addressing this suboptimal bias-variance trade-off rely on the influence function (IF) of the target parameter. When estimating multiple target parameters, these methods require debiasing the nuisance parameter multiple times using the corresponding IFs, which poses analytical and computational challenges. In this work, we leverage the targeted maximum likelihood estimation (TMLE) framework to propose a novel method named kernel debiased plug-in estimation (KDPE). KDPE refines an initial estimate through regularized likelihood maximization steps, employing a nonparametric model based on reproducing kernel Hilbert spaces. We show that KDPE: (i) simultaneously debiases all pathwise differentiable target parameters that satisfy our regularity conditions, (ii) does not require the IF for implementation, and (iii) remains computationally tractable. We numerically illustrate the use of KDPE and validate our theoretical results.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-cho24c, title = {Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters}, author = {Cho, Brian M and Mukhin, Yaroslav and Gan, Kyra and Malenica, Ivana}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {8534--8555}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/cho24c/cho24c.pdf}, url = {https://proceedings.mlr.press/v235/cho24c.html}, abstract = {When estimating target parameters in nonparametric models with nuisance parameters, substituting the unknown nuisances with nonparametric estimators can introduce "plug-in bias." Traditional methods addressing this suboptimal bias-variance trade-off rely on the influence function (IF) of the target parameter. When estimating multiple target parameters, these methods require debiasing the nuisance parameter multiple times using the corresponding IFs, which poses analytical and computational challenges. In this work, we leverage the targeted maximum likelihood estimation (TMLE) framework to propose a novel method named kernel debiased plug-in estimation (KDPE). KDPE refines an initial estimate through regularized likelihood maximization steps, employing a nonparametric model based on reproducing kernel Hilbert spaces. We show that KDPE: (i) simultaneously debiases all pathwise differentiable target parameters that satisfy our regularity conditions, (ii) does not require the IF for implementation, and (iii) remains computationally tractable. We numerically illustrate the use of KDPE and validate our theoretical results.} }
Endnote
%0 Conference Paper %T Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters %A Brian M Cho %A Yaroslav Mukhin %A Kyra Gan %A Ivana Malenica %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-cho24c %I PMLR %P 8534--8555 %U https://proceedings.mlr.press/v235/cho24c.html %V 235 %X When estimating target parameters in nonparametric models with nuisance parameters, substituting the unknown nuisances with nonparametric estimators can introduce "plug-in bias." Traditional methods addressing this suboptimal bias-variance trade-off rely on the influence function (IF) of the target parameter. When estimating multiple target parameters, these methods require debiasing the nuisance parameter multiple times using the corresponding IFs, which poses analytical and computational challenges. In this work, we leverage the targeted maximum likelihood estimation (TMLE) framework to propose a novel method named kernel debiased plug-in estimation (KDPE). KDPE refines an initial estimate through regularized likelihood maximization steps, employing a nonparametric model based on reproducing kernel Hilbert spaces. We show that KDPE: (i) simultaneously debiases all pathwise differentiable target parameters that satisfy our regularity conditions, (ii) does not require the IF for implementation, and (iii) remains computationally tractable. We numerically illustrate the use of KDPE and validate our theoretical results.
APA
Cho, B.M., Mukhin, Y., Gan, K. & Malenica, I.. (2024). Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:8534-8555 Available from https://proceedings.mlr.press/v235/cho24c.html.

Related Material