A Near-Linear Time Approximation Algorithm for Beyond-Worst-Case Graph Clustering

Vincent Cohen-Addad, Tommaso D’Orsi, Aida Mousavifar
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:9208-9229, 2024.

Abstract

We consider the semi-random graph model of [Makarychev, Makarychev and Vijayaraghavan, STOC’12], where, given a random bipartite graph with $\alpha$ edges and an unknown bipartition $(A, B)$ of the vertex set, an adversary can add arbitrary edges inside each community and remove arbitrary edges from the cut $(A, B)$ (i.e. all adversarial changes are monotone with respect to the bipartition). For this model, a polynomial time algorithm [MMV’12] is known to approximate the Balanced Cut problem up to value $O(\alpha)$ as long as the cut $(A, B)$ has size $\Omega(\alpha)$. However, it consists of slow subroutines requiring optimal solutions for logarithmically many semidefinite programs. We study the fine-grained complexity of the problem and present the first near-linear time algorithm that achieves similar performances to that of [MMV’12]. Our algorithm runs in time $O(|V(G)|^{1+o(1)} + |E(G)|^{1+o(1)})$ and finds a balanced cut of value $O(\alpha).$ Our approach appears easily extendible to related problem, such as Sparsest Cut, and also yields an near-linear time $O(1)$-approximation to Dagupta’s objective function for hierarchical clustering [Dasgupta, STOC’16] for the semi-random hierarchical stochastic block model inputs of [Cohen-Addad, Kanade, Mallmann-Trenn, Mathieu, JACM’19].

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-cohen-addad24c, title = {A Near-Linear Time Approximation Algorithm for Beyond-Worst-Case Graph Clustering}, author = {Cohen-Addad, Vincent and D'Orsi, Tommaso and Mousavifar, Aida}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {9208--9229}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/cohen-addad24c/cohen-addad24c.pdf}, url = {https://proceedings.mlr.press/v235/cohen-addad24c.html}, abstract = {We consider the semi-random graph model of [Makarychev, Makarychev and Vijayaraghavan, STOC’12], where, given a random bipartite graph with $\alpha$ edges and an unknown bipartition $(A, B)$ of the vertex set, an adversary can add arbitrary edges inside each community and remove arbitrary edges from the cut $(A, B)$ (i.e. all adversarial changes are monotone with respect to the bipartition). For this model, a polynomial time algorithm [MMV’12] is known to approximate the Balanced Cut problem up to value $O(\alpha)$ as long as the cut $(A, B)$ has size $\Omega(\alpha)$. However, it consists of slow subroutines requiring optimal solutions for logarithmically many semidefinite programs. We study the fine-grained complexity of the problem and present the first near-linear time algorithm that achieves similar performances to that of [MMV’12]. Our algorithm runs in time $O(|V(G)|^{1+o(1)} + |E(G)|^{1+o(1)})$ and finds a balanced cut of value $O(\alpha).$ Our approach appears easily extendible to related problem, such as Sparsest Cut, and also yields an near-linear time $O(1)$-approximation to Dagupta’s objective function for hierarchical clustering [Dasgupta, STOC’16] for the semi-random hierarchical stochastic block model inputs of [Cohen-Addad, Kanade, Mallmann-Trenn, Mathieu, JACM’19].} }
Endnote
%0 Conference Paper %T A Near-Linear Time Approximation Algorithm for Beyond-Worst-Case Graph Clustering %A Vincent Cohen-Addad %A Tommaso D’Orsi %A Aida Mousavifar %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-cohen-addad24c %I PMLR %P 9208--9229 %U https://proceedings.mlr.press/v235/cohen-addad24c.html %V 235 %X We consider the semi-random graph model of [Makarychev, Makarychev and Vijayaraghavan, STOC’12], where, given a random bipartite graph with $\alpha$ edges and an unknown bipartition $(A, B)$ of the vertex set, an adversary can add arbitrary edges inside each community and remove arbitrary edges from the cut $(A, B)$ (i.e. all adversarial changes are monotone with respect to the bipartition). For this model, a polynomial time algorithm [MMV’12] is known to approximate the Balanced Cut problem up to value $O(\alpha)$ as long as the cut $(A, B)$ has size $\Omega(\alpha)$. However, it consists of slow subroutines requiring optimal solutions for logarithmically many semidefinite programs. We study the fine-grained complexity of the problem and present the first near-linear time algorithm that achieves similar performances to that of [MMV’12]. Our algorithm runs in time $O(|V(G)|^{1+o(1)} + |E(G)|^{1+o(1)})$ and finds a balanced cut of value $O(\alpha).$ Our approach appears easily extendible to related problem, such as Sparsest Cut, and also yields an near-linear time $O(1)$-approximation to Dagupta’s objective function for hierarchical clustering [Dasgupta, STOC’16] for the semi-random hierarchical stochastic block model inputs of [Cohen-Addad, Kanade, Mallmann-Trenn, Mathieu, JACM’19].
APA
Cohen-Addad, V., D’Orsi, T. & Mousavifar, A.. (2024). A Near-Linear Time Approximation Algorithm for Beyond-Worst-Case Graph Clustering. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:9208-9229 Available from https://proceedings.mlr.press/v235/cohen-addad24c.html.

Related Material