Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient

Hao Di, Haishan Ye, Yueling Zhang, Xiangyu Chang, Guang Dai, Ivor Tsang
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:10792-10810, 2024.

Abstract

Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods. However, in composite optimization problems, ZO methods encounter an additional variance called the coordinate-wise variance, which stems from the random gradient estimation. To reduce this variance, prior works require estimating all partial derivatives, essentially approximating FO information. This approach demands $\mathcal{O}(d)$ function evaluations ($d$ is the dimension size), which incurs substantial computational costs and is prohibitive in high-dimensional scenarios. This paper proposes the Zeroth-order Proximal Double Variance Reduction ($\texttt{ZPDVR}$) method, which utilizes the averaging trick to reduce both sampling and coordinate-wise variances. Compared to prior methods, $\texttt{ZPDVR}$ relies solely on random gradient estimates, calls the stochastic zeroth-order oracle (SZO) in expectation $\mathcal{O}(1)$ times per iteration, and achieves the optimal $\mathcal{O}(d(n + \kappa)\log (\frac{1}{\epsilon}))$ SZO query complexity in the strongly convex and smooth setting, where $\kappa$ represents the condition number and $\epsilon$ is the desired accuracy. Empirical results validate $\texttt{ZPDVR}$’s linear convergence and demonstrate its superior performance over other related methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-di24b, title = {Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient}, author = {Di, Hao and Ye, Haishan and Zhang, Yueling and Chang, Xiangyu and Dai, Guang and Tsang, Ivor}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {10792--10810}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/di24b/di24b.pdf}, url = {https://proceedings.mlr.press/v235/di24b.html}, abstract = {Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods. However, in composite optimization problems, ZO methods encounter an additional variance called the coordinate-wise variance, which stems from the random gradient estimation. To reduce this variance, prior works require estimating all partial derivatives, essentially approximating FO information. This approach demands $\mathcal{O}(d)$ function evaluations ($d$ is the dimension size), which incurs substantial computational costs and is prohibitive in high-dimensional scenarios. This paper proposes the Zeroth-order Proximal Double Variance Reduction ($\texttt{ZPDVR}$) method, which utilizes the averaging trick to reduce both sampling and coordinate-wise variances. Compared to prior methods, $\texttt{ZPDVR}$ relies solely on random gradient estimates, calls the stochastic zeroth-order oracle (SZO) in expectation $\mathcal{O}(1)$ times per iteration, and achieves the optimal $\mathcal{O}(d(n + \kappa)\log (\frac{1}{\epsilon}))$ SZO query complexity in the strongly convex and smooth setting, where $\kappa$ represents the condition number and $\epsilon$ is the desired accuracy. Empirical results validate $\texttt{ZPDVR}$’s linear convergence and demonstrate its superior performance over other related methods.} }
Endnote
%0 Conference Paper %T Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient %A Hao Di %A Haishan Ye %A Yueling Zhang %A Xiangyu Chang %A Guang Dai %A Ivor Tsang %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-di24b %I PMLR %P 10792--10810 %U https://proceedings.mlr.press/v235/di24b.html %V 235 %X Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods. However, in composite optimization problems, ZO methods encounter an additional variance called the coordinate-wise variance, which stems from the random gradient estimation. To reduce this variance, prior works require estimating all partial derivatives, essentially approximating FO information. This approach demands $\mathcal{O}(d)$ function evaluations ($d$ is the dimension size), which incurs substantial computational costs and is prohibitive in high-dimensional scenarios. This paper proposes the Zeroth-order Proximal Double Variance Reduction ($\texttt{ZPDVR}$) method, which utilizes the averaging trick to reduce both sampling and coordinate-wise variances. Compared to prior methods, $\texttt{ZPDVR}$ relies solely on random gradient estimates, calls the stochastic zeroth-order oracle (SZO) in expectation $\mathcal{O}(1)$ times per iteration, and achieves the optimal $\mathcal{O}(d(n + \kappa)\log (\frac{1}{\epsilon}))$ SZO query complexity in the strongly convex and smooth setting, where $\kappa$ represents the condition number and $\epsilon$ is the desired accuracy. Empirical results validate $\texttt{ZPDVR}$’s linear convergence and demonstrate its superior performance over other related methods.
APA
Di, H., Ye, H., Zhang, Y., Chang, X., Dai, G. & Tsang, I.. (2024). Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:10792-10810 Available from https://proceedings.mlr.press/v235/di24b.html.

Related Material