Bottleneck-Minimal Indexing for Generative Document Retrieval

Xin Du, Lixin Xiu, Kumiko Tanaka-Ishii
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:11888-11904, 2024.

Abstract

We apply an information-theoretic perspective to reconsider generative document retrieval (GDR), in which a document $x \in \mathcal{X}$ is indexed by $t \in \mathcal{T}$, and a neural autoregressive model is trained to map queries $\mathcal{Q}$ to $\mathcal{T}$. GDR can be considered to involve information transmission from documents $\mathcal{X}$ to queries $\mathcal{Q}$, with the requirement to transmit more bits via the indexes $\mathcal{T}$. By applying Shannon’s rate-distortion theory, the optimality of indexing can be analyzed in terms of the mutual information, and the design of the indexes $\mathcal{T}$ can then be regarded as a bottleneck in GDR. After reformulating GDR from this perspective, we empirically quantify the bottleneck underlying GDR. Finally, using the NQ320K and MARCO datasets, we evaluate our proposed bottleneck-minimal indexing method in comparison with various previous indexing methods, and we show that it outperforms those methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-du24j, title = {Bottleneck-Minimal Indexing for Generative Document Retrieval}, author = {Du, Xin and Xiu, Lixin and Tanaka-Ishii, Kumiko}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {11888--11904}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/du24j/du24j.pdf}, url = {https://proceedings.mlr.press/v235/du24j.html}, abstract = {We apply an information-theoretic perspective to reconsider generative document retrieval (GDR), in which a document $x \in \mathcal{X}$ is indexed by $t \in \mathcal{T}$, and a neural autoregressive model is trained to map queries $\mathcal{Q}$ to $\mathcal{T}$. GDR can be considered to involve information transmission from documents $\mathcal{X}$ to queries $\mathcal{Q}$, with the requirement to transmit more bits via the indexes $\mathcal{T}$. By applying Shannon’s rate-distortion theory, the optimality of indexing can be analyzed in terms of the mutual information, and the design of the indexes $\mathcal{T}$ can then be regarded as a bottleneck in GDR. After reformulating GDR from this perspective, we empirically quantify the bottleneck underlying GDR. Finally, using the NQ320K and MARCO datasets, we evaluate our proposed bottleneck-minimal indexing method in comparison with various previous indexing methods, and we show that it outperforms those methods.} }
Endnote
%0 Conference Paper %T Bottleneck-Minimal Indexing for Generative Document Retrieval %A Xin Du %A Lixin Xiu %A Kumiko Tanaka-Ishii %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-du24j %I PMLR %P 11888--11904 %U https://proceedings.mlr.press/v235/du24j.html %V 235 %X We apply an information-theoretic perspective to reconsider generative document retrieval (GDR), in which a document $x \in \mathcal{X}$ is indexed by $t \in \mathcal{T}$, and a neural autoregressive model is trained to map queries $\mathcal{Q}$ to $\mathcal{T}$. GDR can be considered to involve information transmission from documents $\mathcal{X}$ to queries $\mathcal{Q}$, with the requirement to transmit more bits via the indexes $\mathcal{T}$. By applying Shannon’s rate-distortion theory, the optimality of indexing can be analyzed in terms of the mutual information, and the design of the indexes $\mathcal{T}$ can then be regarded as a bottleneck in GDR. After reformulating GDR from this perspective, we empirically quantify the bottleneck underlying GDR. Finally, using the NQ320K and MARCO datasets, we evaluate our proposed bottleneck-minimal indexing method in comparison with various previous indexing methods, and we show that it outperforms those methods.
APA
Du, X., Xiu, L. & Tanaka-Ishii, K.. (2024). Bottleneck-Minimal Indexing for Generative Document Retrieval. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:11888-11904 Available from https://proceedings.mlr.press/v235/du24j.html.

Related Material