MOMENT: A Family of Open Time-series Foundation Models

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, Artur Dubrawski
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:16115-16152, 2024.

Abstract

We introduce MOMENT, a family of open-source foundation models for general-purpose time series analysis. Pre-training large models on time series data is challenging due to (1) the absence of a large and cohesive public time series repository, and (2) diverse time series characteristics which make multi-dataset training onerous. Additionally, (3) experimental benchmarks to evaluate these models, especially in scenarios with limited resources, time, and supervision, are still in their nascent stages. To address these challenges, we compile a large and diverse collection of public time series, called the Time series Pile, and systematically tackle time series-specific challenges to unlock large-scale multi-dataset pre-training. Finally, we build on recent work to design a benchmark to evaluate time series foundation models on diverse tasks and datasets in limited supervision settings. Experiments on this benchmark demonstrate the effectiveness of our pre-trained models with minimal data and task-specific fine-tuning. Finally, we present several interesting empirical observations about large pre-trained time series models. Pre-trained models (AutonLab/MOMENT-1-large) and Time Series Pile (AutonLab/Timeseries-PILE) are available on Huggingface.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-goswami24a, title = {{MOMENT}: A Family of Open Time-series Foundation Models}, author = {Goswami, Mononito and Szafer, Konrad and Choudhry, Arjun and Cai, Yifu and Li, Shuo and Dubrawski, Artur}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {16115--16152}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/goswami24a/goswami24a.pdf}, url = {https://proceedings.mlr.press/v235/goswami24a.html}, abstract = {We introduce MOMENT, a family of open-source foundation models for general-purpose time series analysis. Pre-training large models on time series data is challenging due to (1) the absence of a large and cohesive public time series repository, and (2) diverse time series characteristics which make multi-dataset training onerous. Additionally, (3) experimental benchmarks to evaluate these models, especially in scenarios with limited resources, time, and supervision, are still in their nascent stages. To address these challenges, we compile a large and diverse collection of public time series, called the Time series Pile, and systematically tackle time series-specific challenges to unlock large-scale multi-dataset pre-training. Finally, we build on recent work to design a benchmark to evaluate time series foundation models on diverse tasks and datasets in limited supervision settings. Experiments on this benchmark demonstrate the effectiveness of our pre-trained models with minimal data and task-specific fine-tuning. Finally, we present several interesting empirical observations about large pre-trained time series models. Pre-trained models (AutonLab/MOMENT-1-large) and Time Series Pile (AutonLab/Timeseries-PILE) are available on Huggingface.} }
Endnote
%0 Conference Paper %T MOMENT: A Family of Open Time-series Foundation Models %A Mononito Goswami %A Konrad Szafer %A Arjun Choudhry %A Yifu Cai %A Shuo Li %A Artur Dubrawski %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-goswami24a %I PMLR %P 16115--16152 %U https://proceedings.mlr.press/v235/goswami24a.html %V 235 %X We introduce MOMENT, a family of open-source foundation models for general-purpose time series analysis. Pre-training large models on time series data is challenging due to (1) the absence of a large and cohesive public time series repository, and (2) diverse time series characteristics which make multi-dataset training onerous. Additionally, (3) experimental benchmarks to evaluate these models, especially in scenarios with limited resources, time, and supervision, are still in their nascent stages. To address these challenges, we compile a large and diverse collection of public time series, called the Time series Pile, and systematically tackle time series-specific challenges to unlock large-scale multi-dataset pre-training. Finally, we build on recent work to design a benchmark to evaluate time series foundation models on diverse tasks and datasets in limited supervision settings. Experiments on this benchmark demonstrate the effectiveness of our pre-trained models with minimal data and task-specific fine-tuning. Finally, we present several interesting empirical observations about large pre-trained time series models. Pre-trained models (AutonLab/MOMENT-1-large) and Time Series Pile (AutonLab/Timeseries-PILE) are available on Huggingface.
APA
Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S. & Dubrawski, A.. (2024). MOMENT: A Family of Open Time-series Foundation Models. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:16115-16152 Available from https://proceedings.mlr.press/v235/goswami24a.html.

Related Material