Binary Decomposition: A Problem Transformation Perspective for Open-Set Semi-Supervised Learning

Jun-Yi Hang, Min-Ling Zhang
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:17505-17518, 2024.

Abstract

Semi-supervised learning (SSL) is a classical machine learning paradigm dealing with labeled and unlabeled data. However, it often suffers performance degradation in real-world open-set scenarios, where unlabeled data contains outliers from novel categories that do not appear in labeled data. Existing studies commonly tackle this challenging open-set SSL problem with detect-and-filter strategy, which attempts to purify unlabeled data by detecting and filtering outliers. In this paper, we propose a novel binary decomposition strategy, which refrains from error-prone procedure of outlier detection by directly transforming the original open-set SSL problem into a number of standard binary SSL problems. Accordingly, a concise yet effective approach named BDMatch is presented. BDMatch confronts two attendant issues brought by binary decomposition, i.e. class-imbalance and representation-compromise, with adaptive logit adjustment and label-specific feature learning respectively. Comprehensive experiments on diversified benchmarks clearly validate the superiority of BDMatch as well as the effectiveness of our binary decomposition strategy.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-hang24a, title = {Binary Decomposition: A Problem Transformation Perspective for Open-Set Semi-Supervised Learning}, author = {Hang, Jun-Yi and Zhang, Min-Ling}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {17505--17518}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/hang24a/hang24a.pdf}, url = {https://proceedings.mlr.press/v235/hang24a.html}, abstract = {Semi-supervised learning (SSL) is a classical machine learning paradigm dealing with labeled and unlabeled data. However, it often suffers performance degradation in real-world open-set scenarios, where unlabeled data contains outliers from novel categories that do not appear in labeled data. Existing studies commonly tackle this challenging open-set SSL problem with detect-and-filter strategy, which attempts to purify unlabeled data by detecting and filtering outliers. In this paper, we propose a novel binary decomposition strategy, which refrains from error-prone procedure of outlier detection by directly transforming the original open-set SSL problem into a number of standard binary SSL problems. Accordingly, a concise yet effective approach named BDMatch is presented. BDMatch confronts two attendant issues brought by binary decomposition, i.e. class-imbalance and representation-compromise, with adaptive logit adjustment and label-specific feature learning respectively. Comprehensive experiments on diversified benchmarks clearly validate the superiority of BDMatch as well as the effectiveness of our binary decomposition strategy.} }
Endnote
%0 Conference Paper %T Binary Decomposition: A Problem Transformation Perspective for Open-Set Semi-Supervised Learning %A Jun-Yi Hang %A Min-Ling Zhang %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-hang24a %I PMLR %P 17505--17518 %U https://proceedings.mlr.press/v235/hang24a.html %V 235 %X Semi-supervised learning (SSL) is a classical machine learning paradigm dealing with labeled and unlabeled data. However, it often suffers performance degradation in real-world open-set scenarios, where unlabeled data contains outliers from novel categories that do not appear in labeled data. Existing studies commonly tackle this challenging open-set SSL problem with detect-and-filter strategy, which attempts to purify unlabeled data by detecting and filtering outliers. In this paper, we propose a novel binary decomposition strategy, which refrains from error-prone procedure of outlier detection by directly transforming the original open-set SSL problem into a number of standard binary SSL problems. Accordingly, a concise yet effective approach named BDMatch is presented. BDMatch confronts two attendant issues brought by binary decomposition, i.e. class-imbalance and representation-compromise, with adaptive logit adjustment and label-specific feature learning respectively. Comprehensive experiments on diversified benchmarks clearly validate the superiority of BDMatch as well as the effectiveness of our binary decomposition strategy.
APA
Hang, J. & Zhang, M.. (2024). Binary Decomposition: A Problem Transformation Perspective for Open-Set Semi-Supervised Learning. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:17505-17518 Available from https://proceedings.mlr.press/v235/hang24a.html.

Related Material