Balanced Resonate-and-Fire Neurons

Saya Higuchi, Sebastian Kairat, Sander Bohte, Sebastian Otte
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:18305-18323, 2024.

Abstract

The resonate-and-fire (RF) neuron, introduced over two decades ago, is a simple, efficient, yet biologically plausible spiking neuron model, which can extract frequency patterns within the time domain due to its resonating membrane dynamics. However, previous RF formulations suffer from intrinsic shortcomings that limit effective learning and prevent exploiting the principled advantage of RF neurons. Here, we introduce the balanced RF (BRF) neuron, which alleviates some of the intrinsic limitations of vanilla RF neurons and demonstrates its effectiveness within recurrent spiking neural networks (RSNNs) on various sequence learning tasks. We show that networks of BRF neurons achieve overall higher task performance, produce only a fraction of the spikes, and require significantly fewer parameters as compared to modern RSNNs. Moreover, BRF-RSNN consistently provide much faster and more stable training convergence, even when bridging many hundreds of time steps during backpropagation through time (BPTT). These results underscore that our BRF-RSNN is a strong candidate for future large-scale RSNN architectures, further lines of research in SNN methodology, and more efficient hardware implementations.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-higuchi24a, title = {Balanced Resonate-and-Fire Neurons}, author = {Higuchi, Saya and Kairat, Sebastian and Bohte, Sander and Otte, Sebastian}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {18305--18323}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/higuchi24a/higuchi24a.pdf}, url = {https://proceedings.mlr.press/v235/higuchi24a.html}, abstract = {The resonate-and-fire (RF) neuron, introduced over two decades ago, is a simple, efficient, yet biologically plausible spiking neuron model, which can extract frequency patterns within the time domain due to its resonating membrane dynamics. However, previous RF formulations suffer from intrinsic shortcomings that limit effective learning and prevent exploiting the principled advantage of RF neurons. Here, we introduce the balanced RF (BRF) neuron, which alleviates some of the intrinsic limitations of vanilla RF neurons and demonstrates its effectiveness within recurrent spiking neural networks (RSNNs) on various sequence learning tasks. We show that networks of BRF neurons achieve overall higher task performance, produce only a fraction of the spikes, and require significantly fewer parameters as compared to modern RSNNs. Moreover, BRF-RSNN consistently provide much faster and more stable training convergence, even when bridging many hundreds of time steps during backpropagation through time (BPTT). These results underscore that our BRF-RSNN is a strong candidate for future large-scale RSNN architectures, further lines of research in SNN methodology, and more efficient hardware implementations.} }
Endnote
%0 Conference Paper %T Balanced Resonate-and-Fire Neurons %A Saya Higuchi %A Sebastian Kairat %A Sander Bohte %A Sebastian Otte %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-higuchi24a %I PMLR %P 18305--18323 %U https://proceedings.mlr.press/v235/higuchi24a.html %V 235 %X The resonate-and-fire (RF) neuron, introduced over two decades ago, is a simple, efficient, yet biologically plausible spiking neuron model, which can extract frequency patterns within the time domain due to its resonating membrane dynamics. However, previous RF formulations suffer from intrinsic shortcomings that limit effective learning and prevent exploiting the principled advantage of RF neurons. Here, we introduce the balanced RF (BRF) neuron, which alleviates some of the intrinsic limitations of vanilla RF neurons and demonstrates its effectiveness within recurrent spiking neural networks (RSNNs) on various sequence learning tasks. We show that networks of BRF neurons achieve overall higher task performance, produce only a fraction of the spikes, and require significantly fewer parameters as compared to modern RSNNs. Moreover, BRF-RSNN consistently provide much faster and more stable training convergence, even when bridging many hundreds of time steps during backpropagation through time (BPTT). These results underscore that our BRF-RSNN is a strong candidate for future large-scale RSNN architectures, further lines of research in SNN methodology, and more efficient hardware implementations.
APA
Higuchi, S., Kairat, S., Bohte, S. & Otte, S.. (2024). Balanced Resonate-and-Fire Neurons. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:18305-18323 Available from https://proceedings.mlr.press/v235/higuchi24a.html.

Related Material