Equilibrium of Data Markets with Externality

Safwan Hossain, Yiling Chen
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:18905-18925, 2024.

Abstract

We model real-world data markets, where sellers post fixed prices and buyers are free to purchase from any set of sellers, as a simultaneous game. A key component here is the negative externality buyers induce on one another due to data purchases. Starting with a simple setting where buyers know their valuations a priori, we characterize both the existence and welfare properties of the pure Nash equilibrium in the presence of such externality. While the outcomes are bleak without any intervention, mirroring the limitations of current data markets, we prove that for a standard class of externality functions, platforms intervening through a transaction cost can lead to a pure equilibrium with strong welfare guarantees. We next consider a more realistic setting where buyers learn their valuations over time through market interactions. Our intervention is feasible here as well, and we consider learning algorithms to achieve low regret concerning both individual and cumulative utility metrics. Lastly, we analyze the promises of this intervention under a much richer externality model.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-hossain24a, title = {Equilibrium of Data Markets with Externality}, author = {Hossain, Safwan and Chen, Yiling}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {18905--18925}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/hossain24a/hossain24a.pdf}, url = {https://proceedings.mlr.press/v235/hossain24a.html}, abstract = {We model real-world data markets, where sellers post fixed prices and buyers are free to purchase from any set of sellers, as a simultaneous game. A key component here is the negative externality buyers induce on one another due to data purchases. Starting with a simple setting where buyers know their valuations a priori, we characterize both the existence and welfare properties of the pure Nash equilibrium in the presence of such externality. While the outcomes are bleak without any intervention, mirroring the limitations of current data markets, we prove that for a standard class of externality functions, platforms intervening through a transaction cost can lead to a pure equilibrium with strong welfare guarantees. We next consider a more realistic setting where buyers learn their valuations over time through market interactions. Our intervention is feasible here as well, and we consider learning algorithms to achieve low regret concerning both individual and cumulative utility metrics. Lastly, we analyze the promises of this intervention under a much richer externality model.} }
Endnote
%0 Conference Paper %T Equilibrium of Data Markets with Externality %A Safwan Hossain %A Yiling Chen %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-hossain24a %I PMLR %P 18905--18925 %U https://proceedings.mlr.press/v235/hossain24a.html %V 235 %X We model real-world data markets, where sellers post fixed prices and buyers are free to purchase from any set of sellers, as a simultaneous game. A key component here is the negative externality buyers induce on one another due to data purchases. Starting with a simple setting where buyers know their valuations a priori, we characterize both the existence and welfare properties of the pure Nash equilibrium in the presence of such externality. While the outcomes are bleak without any intervention, mirroring the limitations of current data markets, we prove that for a standard class of externality functions, platforms intervening through a transaction cost can lead to a pure equilibrium with strong welfare guarantees. We next consider a more realistic setting where buyers learn their valuations over time through market interactions. Our intervention is feasible here as well, and we consider learning algorithms to achieve low regret concerning both individual and cumulative utility metrics. Lastly, we analyze the promises of this intervention under a much richer externality model.
APA
Hossain, S. & Chen, Y.. (2024). Equilibrium of Data Markets with Externality. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:18905-18925 Available from https://proceedings.mlr.press/v235/hossain24a.html.

Related Material