Overcoming Data and Model heterogeneities in Decentralized Federated Learning via Synthetic Anchors

Chun-Yin Huang, Kartik Srinivas, Xin Zhang, Xiaoxiao Li
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:20111-20133, 2024.

Abstract

Conventional Federated Learning (FL) involves collaborative training of a global model while maintaining user data privacy. One of its branches, decentralized FL, is a serverless network that allows clients to own and optimize different local models separately, which results in saving management and communication resources. Despite the promising advancements in decentralized FL, it may reduce model generalizability due to lacking a global model. In this scenario, managing data and model heterogeneity among clients becomes a crucial problem, which poses a unique challenge that must be overcome: How can every client’s local model learn generalizable representation in a decentralized manner? To address this challenge, we propose a novel Decentralized FL technique by introducing Synthetic Anchors, dubbed as DeSA. Based on the theory of domain adaptation and Knowledge Distillation (KD), we theoretically and empirically show that synthesizing global anchors based on raw data distribution facilitates mutual knowledge transfer. We further design two effective regularization terms for local training: 1) REG loss that regularizes the distribution of the client’s latent embedding with the anchors and 2) KD loss that enables clients to learn from others. Through extensive experiments on diverse client data distributions, we showcase the effectiveness of DeSA in enhancing both inter- and intra-domain accuracy of each client. The implementation of DeSA can be found at: https://github.com/ubc-tea/DESA

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-huang24v, title = {Overcoming Data and Model heterogeneities in Decentralized Federated Learning via Synthetic Anchors}, author = {Huang, Chun-Yin and Srinivas, Kartik and Zhang, Xin and Li, Xiaoxiao}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {20111--20133}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/huang24v/huang24v.pdf}, url = {https://proceedings.mlr.press/v235/huang24v.html}, abstract = {Conventional Federated Learning (FL) involves collaborative training of a global model while maintaining user data privacy. One of its branches, decentralized FL, is a serverless network that allows clients to own and optimize different local models separately, which results in saving management and communication resources. Despite the promising advancements in decentralized FL, it may reduce model generalizability due to lacking a global model. In this scenario, managing data and model heterogeneity among clients becomes a crucial problem, which poses a unique challenge that must be overcome: How can every client’s local model learn generalizable representation in a decentralized manner? To address this challenge, we propose a novel Decentralized FL technique by introducing Synthetic Anchors, dubbed as DeSA. Based on the theory of domain adaptation and Knowledge Distillation (KD), we theoretically and empirically show that synthesizing global anchors based on raw data distribution facilitates mutual knowledge transfer. We further design two effective regularization terms for local training: 1) REG loss that regularizes the distribution of the client’s latent embedding with the anchors and 2) KD loss that enables clients to learn from others. Through extensive experiments on diverse client data distributions, we showcase the effectiveness of DeSA in enhancing both inter- and intra-domain accuracy of each client. The implementation of DeSA can be found at: https://github.com/ubc-tea/DESA} }
Endnote
%0 Conference Paper %T Overcoming Data and Model heterogeneities in Decentralized Federated Learning via Synthetic Anchors %A Chun-Yin Huang %A Kartik Srinivas %A Xin Zhang %A Xiaoxiao Li %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-huang24v %I PMLR %P 20111--20133 %U https://proceedings.mlr.press/v235/huang24v.html %V 235 %X Conventional Federated Learning (FL) involves collaborative training of a global model while maintaining user data privacy. One of its branches, decentralized FL, is a serverless network that allows clients to own and optimize different local models separately, which results in saving management and communication resources. Despite the promising advancements in decentralized FL, it may reduce model generalizability due to lacking a global model. In this scenario, managing data and model heterogeneity among clients becomes a crucial problem, which poses a unique challenge that must be overcome: How can every client’s local model learn generalizable representation in a decentralized manner? To address this challenge, we propose a novel Decentralized FL technique by introducing Synthetic Anchors, dubbed as DeSA. Based on the theory of domain adaptation and Knowledge Distillation (KD), we theoretically and empirically show that synthesizing global anchors based on raw data distribution facilitates mutual knowledge transfer. We further design two effective regularization terms for local training: 1) REG loss that regularizes the distribution of the client’s latent embedding with the anchors and 2) KD loss that enables clients to learn from others. Through extensive experiments on diverse client data distributions, we showcase the effectiveness of DeSA in enhancing both inter- and intra-domain accuracy of each client. The implementation of DeSA can be found at: https://github.com/ubc-tea/DESA
APA
Huang, C., Srinivas, K., Zhang, X. & Li, X.. (2024). Overcoming Data and Model heterogeneities in Decentralized Federated Learning via Synthetic Anchors. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:20111-20133 Available from https://proceedings.mlr.press/v235/huang24v.html.

Related Material