Make-A-Shape: a Ten-Million-scale 3D Shape Model

Ka-Hei Hui, Aditya Sanghi, Arianna Rampini, Kamal Rahimi Malekshan, Zhengzhe Liu, Hooman Shayani, Chi-Wing Fu
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:20660-20681, 2024.

Abstract

The progression in large-scale 3D generative models has been impeded by significant resource requirements for training and challenges like inefficient representations. This paper introduces Make-A-Shape, a novel 3D generative model trained on a vast scale, using 10 million publicly-available shapes. We first innovate the wavelet-tree representation to encode high-resolution SDF shapes with minimal loss, leveraging our newly-proposed subband coefficient filtering scheme. We then design a subband coefficient packing scheme to facilitate diffusion-based generation and a subband adaptive training strategy for effective training on the large-scale dataset. Our generative framework is versatile, capable of conditioning on various input modalities such as images, point clouds, and voxels, enabling a variety of downstream applications, e.g., unconditional generation, completion, and conditional generation. Our approach clearly surpasses the existing baselines in delivering high-quality results and can efficiently generate shapes within two seconds for most conditions.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-hui24a, title = {Make-A-Shape: a Ten-Million-scale 3{D} Shape Model}, author = {Hui, Ka-Hei and Sanghi, Aditya and Rampini, Arianna and Rahimi Malekshan, Kamal and Liu, Zhengzhe and Shayani, Hooman and Fu, Chi-Wing}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {20660--20681}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/hui24a/hui24a.pdf}, url = {https://proceedings.mlr.press/v235/hui24a.html}, abstract = {The progression in large-scale 3D generative models has been impeded by significant resource requirements for training and challenges like inefficient representations. This paper introduces Make-A-Shape, a novel 3D generative model trained on a vast scale, using 10 million publicly-available shapes. We first innovate the wavelet-tree representation to encode high-resolution SDF shapes with minimal loss, leveraging our newly-proposed subband coefficient filtering scheme. We then design a subband coefficient packing scheme to facilitate diffusion-based generation and a subband adaptive training strategy for effective training on the large-scale dataset. Our generative framework is versatile, capable of conditioning on various input modalities such as images, point clouds, and voxels, enabling a variety of downstream applications, e.g., unconditional generation, completion, and conditional generation. Our approach clearly surpasses the existing baselines in delivering high-quality results and can efficiently generate shapes within two seconds for most conditions.} }
Endnote
%0 Conference Paper %T Make-A-Shape: a Ten-Million-scale 3D Shape Model %A Ka-Hei Hui %A Aditya Sanghi %A Arianna Rampini %A Kamal Rahimi Malekshan %A Zhengzhe Liu %A Hooman Shayani %A Chi-Wing Fu %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-hui24a %I PMLR %P 20660--20681 %U https://proceedings.mlr.press/v235/hui24a.html %V 235 %X The progression in large-scale 3D generative models has been impeded by significant resource requirements for training and challenges like inefficient representations. This paper introduces Make-A-Shape, a novel 3D generative model trained on a vast scale, using 10 million publicly-available shapes. We first innovate the wavelet-tree representation to encode high-resolution SDF shapes with minimal loss, leveraging our newly-proposed subband coefficient filtering scheme. We then design a subband coefficient packing scheme to facilitate diffusion-based generation and a subband adaptive training strategy for effective training on the large-scale dataset. Our generative framework is versatile, capable of conditioning on various input modalities such as images, point clouds, and voxels, enabling a variety of downstream applications, e.g., unconditional generation, completion, and conditional generation. Our approach clearly surpasses the existing baselines in delivering high-quality results and can efficiently generate shapes within two seconds for most conditions.
APA
Hui, K., Sanghi, A., Rampini, A., Rahimi Malekshan, K., Liu, Z., Shayani, H. & Fu, C.. (2024). Make-A-Shape: a Ten-Million-scale 3D Shape Model. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:20660-20681 Available from https://proceedings.mlr.press/v235/hui24a.html.

Related Material