Neural Tangent Kernels Motivate Cross-Covariance Graphs in Neural Networks

Shervin Khalafi, Saurabh Sihag, Alejandro Ribeiro
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:23577-23621, 2024.

Abstract

Neural tangent kernels (NTKs) provide a theoretical regime to analyze the learning and generalization behavior of over-parametrized neural networks. For a supervised learning task, the association between the eigenvectors of the NTK and given data (a concept referred to as alignment in this paper) can govern the rate of convergence of gradient descent, as well as generalization to unseen data. Building upon this concept and leveraging the structure of NTKs for graph neural networks (GNNs), we theoretically investigate NTKs and alignment, where our analysis reveals that optimizing the alignment translates to optimizing the graph representation or the graph shift operator (GSO) in a GNN. Our results further establish theoretical guarantees on the optimality of the alignment for a two-layer GNN and these guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data. The theoretical insights drawn from the analysis of NTKs are validated by our experiments focused on a multi-variate time series prediction task for a publicly available dataset. Specifically, they demonstrate that GNN-based learning models that operate on the cross-covariance matrix indeed outperform those that operate on the covariance matrix estimated from only the input data.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-khalafi24a, title = {Neural Tangent Kernels Motivate Cross-Covariance Graphs in Neural Networks}, author = {Khalafi, Shervin and Sihag, Saurabh and Ribeiro, Alejandro}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {23577--23621}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/khalafi24a/khalafi24a.pdf}, url = {https://proceedings.mlr.press/v235/khalafi24a.html}, abstract = {Neural tangent kernels (NTKs) provide a theoretical regime to analyze the learning and generalization behavior of over-parametrized neural networks. For a supervised learning task, the association between the eigenvectors of the NTK and given data (a concept referred to as alignment in this paper) can govern the rate of convergence of gradient descent, as well as generalization to unseen data. Building upon this concept and leveraging the structure of NTKs for graph neural networks (GNNs), we theoretically investigate NTKs and alignment, where our analysis reveals that optimizing the alignment translates to optimizing the graph representation or the graph shift operator (GSO) in a GNN. Our results further establish theoretical guarantees on the optimality of the alignment for a two-layer GNN and these guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data. The theoretical insights drawn from the analysis of NTKs are validated by our experiments focused on a multi-variate time series prediction task for a publicly available dataset. Specifically, they demonstrate that GNN-based learning models that operate on the cross-covariance matrix indeed outperform those that operate on the covariance matrix estimated from only the input data.} }
Endnote
%0 Conference Paper %T Neural Tangent Kernels Motivate Cross-Covariance Graphs in Neural Networks %A Shervin Khalafi %A Saurabh Sihag %A Alejandro Ribeiro %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-khalafi24a %I PMLR %P 23577--23621 %U https://proceedings.mlr.press/v235/khalafi24a.html %V 235 %X Neural tangent kernels (NTKs) provide a theoretical regime to analyze the learning and generalization behavior of over-parametrized neural networks. For a supervised learning task, the association between the eigenvectors of the NTK and given data (a concept referred to as alignment in this paper) can govern the rate of convergence of gradient descent, as well as generalization to unseen data. Building upon this concept and leveraging the structure of NTKs for graph neural networks (GNNs), we theoretically investigate NTKs and alignment, where our analysis reveals that optimizing the alignment translates to optimizing the graph representation or the graph shift operator (GSO) in a GNN. Our results further establish theoretical guarantees on the optimality of the alignment for a two-layer GNN and these guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data. The theoretical insights drawn from the analysis of NTKs are validated by our experiments focused on a multi-variate time series prediction task for a publicly available dataset. Specifically, they demonstrate that GNN-based learning models that operate on the cross-covariance matrix indeed outperform those that operate on the covariance matrix estimated from only the input data.
APA
Khalafi, S., Sihag, S. & Ribeiro, A.. (2024). Neural Tangent Kernels Motivate Cross-Covariance Graphs in Neural Networks. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:23577-23621 Available from https://proceedings.mlr.press/v235/khalafi24a.html.

Related Material