Off-policy Evaluation Beyond Overlap: Sharp Partial Identification Under Smoothness

Samir Khan, Martin Saveski, Johan Ugander
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:23734-23757, 2024.

Abstract

Off-policy evaluation, and the complementary problem of policy learning, use historical data collected under a logging policy to estimate and/or optimize the value of a target policy. Methods for these tasks typically assume overlap between the target and logging policy, enabling solutions based on importance weighting and/or imputation. Absent such an overlap assumption, existing work either relies on a well-specified model or optimizes needlessly conservative bounds. In this work, we develop methods for no-overlap policy evaluation without a well-specified model, relying instead on non-parametric assumptions on the expected outcome, with a particular focus on Lipschitz smoothness. Under such assumptions we are able to provide sharp bounds on the off-policy value, along with optimal estimators of those bounds. For Lipschitz smoothness, we construct a pair of linear programs that upper and lower bound the contribution of the no-overlap region to the off-policy value. We show that these programs have a concise closed form solution, and that their solutions converge under the Lipschitz assumption to the sharp partial identification bounds at a minimax optimal rate, up to log factors. We demonstrate the effectiveness our methods on two semi-synthetic examples, and obtain informative and valid bounds that are tighter than those possible without smoothness assumptions.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-khan24b, title = {Off-policy Evaluation Beyond Overlap: Sharp Partial Identification Under Smoothness}, author = {Khan, Samir and Saveski, Martin and Ugander, Johan}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {23734--23757}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/khan24b/khan24b.pdf}, url = {https://proceedings.mlr.press/v235/khan24b.html}, abstract = {Off-policy evaluation, and the complementary problem of policy learning, use historical data collected under a logging policy to estimate and/or optimize the value of a target policy. Methods for these tasks typically assume overlap between the target and logging policy, enabling solutions based on importance weighting and/or imputation. Absent such an overlap assumption, existing work either relies on a well-specified model or optimizes needlessly conservative bounds. In this work, we develop methods for no-overlap policy evaluation without a well-specified model, relying instead on non-parametric assumptions on the expected outcome, with a particular focus on Lipschitz smoothness. Under such assumptions we are able to provide sharp bounds on the off-policy value, along with optimal estimators of those bounds. For Lipschitz smoothness, we construct a pair of linear programs that upper and lower bound the contribution of the no-overlap region to the off-policy value. We show that these programs have a concise closed form solution, and that their solutions converge under the Lipschitz assumption to the sharp partial identification bounds at a minimax optimal rate, up to log factors. We demonstrate the effectiveness our methods on two semi-synthetic examples, and obtain informative and valid bounds that are tighter than those possible without smoothness assumptions.} }
Endnote
%0 Conference Paper %T Off-policy Evaluation Beyond Overlap: Sharp Partial Identification Under Smoothness %A Samir Khan %A Martin Saveski %A Johan Ugander %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-khan24b %I PMLR %P 23734--23757 %U https://proceedings.mlr.press/v235/khan24b.html %V 235 %X Off-policy evaluation, and the complementary problem of policy learning, use historical data collected under a logging policy to estimate and/or optimize the value of a target policy. Methods for these tasks typically assume overlap between the target and logging policy, enabling solutions based on importance weighting and/or imputation. Absent such an overlap assumption, existing work either relies on a well-specified model or optimizes needlessly conservative bounds. In this work, we develop methods for no-overlap policy evaluation without a well-specified model, relying instead on non-parametric assumptions on the expected outcome, with a particular focus on Lipschitz smoothness. Under such assumptions we are able to provide sharp bounds on the off-policy value, along with optimal estimators of those bounds. For Lipschitz smoothness, we construct a pair of linear programs that upper and lower bound the contribution of the no-overlap region to the off-policy value. We show that these programs have a concise closed form solution, and that their solutions converge under the Lipschitz assumption to the sharp partial identification bounds at a minimax optimal rate, up to log factors. We demonstrate the effectiveness our methods on two semi-synthetic examples, and obtain informative and valid bounds that are tighter than those possible without smoothness assumptions.
APA
Khan, S., Saveski, M. & Ugander, J.. (2024). Off-policy Evaluation Beyond Overlap: Sharp Partial Identification Under Smoothness. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:23734-23757 Available from https://proceedings.mlr.press/v235/khan24b.html.

Related Material