Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

Dongkwan Kim, Alice Oh
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:24415-24436, 2024.

Abstract

Subgraph representation learning has emerged as an important problem, but it is by default approached with specialized graph neural networks on a large global graph. These models demand extensive memory and computational resources but challenge modeling hierarchical structures of subgraphs. In this paper, we propose Subgraph-To-Node (S2N) translation, a novel formulation for learning representations of subgraphs. Specifically, given a set of subgraphs in the global graph, we construct a new graph by coarsely transforming subgraphs into nodes. Demonstrating both theoretical and empirical evidence, S2N not only significantly reduces memory and computational costs compared to state-of-the-art models but also outperforms them by capturing both local and global structures of the subgraph. By leveraging graph coarsening methods, our method outperforms baselines even in a data-scarce setting with insufficient subgraphs. Our experiments on eight benchmarks demonstrate that fined-tuned models with S2N translation can process 183 – 711 times more subgraph samples than state-of-the-art models at a better or similar performance level.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-kim24aa, title = {Translating Subgraphs to Nodes Makes Simple {GNN}s Strong and Efficient for Subgraph Representation Learning}, author = {Kim, Dongkwan and Oh, Alice}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {24415--24436}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/kim24aa/kim24aa.pdf}, url = {https://proceedings.mlr.press/v235/kim24aa.html}, abstract = {Subgraph representation learning has emerged as an important problem, but it is by default approached with specialized graph neural networks on a large global graph. These models demand extensive memory and computational resources but challenge modeling hierarchical structures of subgraphs. In this paper, we propose Subgraph-To-Node (S2N) translation, a novel formulation for learning representations of subgraphs. Specifically, given a set of subgraphs in the global graph, we construct a new graph by coarsely transforming subgraphs into nodes. Demonstrating both theoretical and empirical evidence, S2N not only significantly reduces memory and computational costs compared to state-of-the-art models but also outperforms them by capturing both local and global structures of the subgraph. By leveraging graph coarsening methods, our method outperforms baselines even in a data-scarce setting with insufficient subgraphs. Our experiments on eight benchmarks demonstrate that fined-tuned models with S2N translation can process 183 – 711 times more subgraph samples than state-of-the-art models at a better or similar performance level.} }
Endnote
%0 Conference Paper %T Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning %A Dongkwan Kim %A Alice Oh %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-kim24aa %I PMLR %P 24415--24436 %U https://proceedings.mlr.press/v235/kim24aa.html %V 235 %X Subgraph representation learning has emerged as an important problem, but it is by default approached with specialized graph neural networks on a large global graph. These models demand extensive memory and computational resources but challenge modeling hierarchical structures of subgraphs. In this paper, we propose Subgraph-To-Node (S2N) translation, a novel formulation for learning representations of subgraphs. Specifically, given a set of subgraphs in the global graph, we construct a new graph by coarsely transforming subgraphs into nodes. Demonstrating both theoretical and empirical evidence, S2N not only significantly reduces memory and computational costs compared to state-of-the-art models but also outperforms them by capturing both local and global structures of the subgraph. By leveraging graph coarsening methods, our method outperforms baselines even in a data-scarce setting with insufficient subgraphs. Our experiments on eight benchmarks demonstrate that fined-tuned models with S2N translation can process 183 – 711 times more subgraph samples than state-of-the-art models at a better or similar performance level.
APA
Kim, D. & Oh, A.. (2024). Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:24415-24436 Available from https://proceedings.mlr.press/v235/kim24aa.html.

Related Material