Clustered Federated Learning via Gradient-based Partitioning

Heasung Kim, Hyeji Kim, Gustavo De Veciana
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:24137-24193, 2024.

Abstract

Clustered Federated Learning (CFL) is a promising distributed learning framework that addresses data heterogeneity issues across multiple clients by grouping clients and providing a shared generalized model for each group. However, under privacy-preserving federated learning protocols where there is no direct sharing of clients’ local datasets, existing approaches often fail to find optimal client groupings resulting in sub-optimal performance. In this paper, we propose a novel CFL algorithm that achieves robust clustering and learning performance. Conceptually, our algorithm groups clients that exhibit similarity in their model updates by periodically accumulating and clustering the gradients that clients compute for various models. The proposed algorithm is shown to achieve a near-optimal error rate for stochastic convergence to optimal models under mild conditions. We present a detailed analysis of the algorithm along with an evaluation on several CFL benchmarks demonstrating that it outperforms existing approaches in terms of convergence speed, clustering accuracy, and task performance.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-kim24p, title = {Clustered Federated Learning via Gradient-based Partitioning}, author = {Kim, Heasung and Kim, Hyeji and De Veciana, Gustavo}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {24137--24193}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/kim24p/kim24p.pdf}, url = {https://proceedings.mlr.press/v235/kim24p.html}, abstract = {Clustered Federated Learning (CFL) is a promising distributed learning framework that addresses data heterogeneity issues across multiple clients by grouping clients and providing a shared generalized model for each group. However, under privacy-preserving federated learning protocols where there is no direct sharing of clients’ local datasets, existing approaches often fail to find optimal client groupings resulting in sub-optimal performance. In this paper, we propose a novel CFL algorithm that achieves robust clustering and learning performance. Conceptually, our algorithm groups clients that exhibit similarity in their model updates by periodically accumulating and clustering the gradients that clients compute for various models. The proposed algorithm is shown to achieve a near-optimal error rate for stochastic convergence to optimal models under mild conditions. We present a detailed analysis of the algorithm along with an evaluation on several CFL benchmarks demonstrating that it outperforms existing approaches in terms of convergence speed, clustering accuracy, and task performance.} }
Endnote
%0 Conference Paper %T Clustered Federated Learning via Gradient-based Partitioning %A Heasung Kim %A Hyeji Kim %A Gustavo De Veciana %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-kim24p %I PMLR %P 24137--24193 %U https://proceedings.mlr.press/v235/kim24p.html %V 235 %X Clustered Federated Learning (CFL) is a promising distributed learning framework that addresses data heterogeneity issues across multiple clients by grouping clients and providing a shared generalized model for each group. However, under privacy-preserving federated learning protocols where there is no direct sharing of clients’ local datasets, existing approaches often fail to find optimal client groupings resulting in sub-optimal performance. In this paper, we propose a novel CFL algorithm that achieves robust clustering and learning performance. Conceptually, our algorithm groups clients that exhibit similarity in their model updates by periodically accumulating and clustering the gradients that clients compute for various models. The proposed algorithm is shown to achieve a near-optimal error rate for stochastic convergence to optimal models under mild conditions. We present a detailed analysis of the algorithm along with an evaluation on several CFL benchmarks demonstrating that it outperforms existing approaches in terms of convergence speed, clustering accuracy, and task performance.
APA
Kim, H., Kim, H. & De Veciana, G.. (2024). Clustered Federated Learning via Gradient-based Partitioning. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:24137-24193 Available from https://proceedings.mlr.press/v235/kim24p.html.

Related Material