Generalized Sobolev Transport for Probability Measures on a Graph

Tam Le, Truyen Nguyen, Kenji Fukumizu
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:26152-26174, 2024.

Abstract

We study the optimal transport (OT) problem for measures supported on a graph metric space. Recently, Le et al. (2022) leverage the graph structure and propose a variant of OT, namely Sobolev transport (ST), which yields a closed-form expression for a fast computation. However, ST is essentially coupled with the $L^p$ geometric structure within its definition which makes it nontrivial to utilize ST for other prior structures. In contrast, the classic OT has the flexibility to adapt to various geometric structures by modifying the underlying cost function. An important instance is the Orlicz-Wasserstein (OW) which moves beyond the $L^p$ structure by leveraging the Orlicz geometric structure. Comparing to the usage of standard $p$-order Wasserstein, OW remarkably helps to advance certain machine learning approaches. Nevertheless, OW brings up a new challenge on its computation due to its two-level optimization formulation. In this work, we leverage a specific class of convex functions for Orlicz structure to propose the generalized Sobolev transport (GST). GST encompasses the ST as its special case, and can be utilized for prior structures beyond the $L^p$ geometry. In connection with the OW, we show that one only needs to simply solve a univariate optimization problem to compute the GST, unlike the complex two-level optimization problem in OW. We empirically illustrate that GST is several-order faster than the OW. Moreover, we provide preliminary evidences on the advantages of GST for document classification and for several tasks in topological data analysis.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-le24a, title = {Generalized Sobolev Transport for Probability Measures on a Graph}, author = {Le, Tam and Nguyen, Truyen and Fukumizu, Kenji}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {26152--26174}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/le24a/le24a.pdf}, url = {https://proceedings.mlr.press/v235/le24a.html}, abstract = {We study the optimal transport (OT) problem for measures supported on a graph metric space. Recently, Le et al. (2022) leverage the graph structure and propose a variant of OT, namely Sobolev transport (ST), which yields a closed-form expression for a fast computation. However, ST is essentially coupled with the $L^p$ geometric structure within its definition which makes it nontrivial to utilize ST for other prior structures. In contrast, the classic OT has the flexibility to adapt to various geometric structures by modifying the underlying cost function. An important instance is the Orlicz-Wasserstein (OW) which moves beyond the $L^p$ structure by leveraging the Orlicz geometric structure. Comparing to the usage of standard $p$-order Wasserstein, OW remarkably helps to advance certain machine learning approaches. Nevertheless, OW brings up a new challenge on its computation due to its two-level optimization formulation. In this work, we leverage a specific class of convex functions for Orlicz structure to propose the generalized Sobolev transport (GST). GST encompasses the ST as its special case, and can be utilized for prior structures beyond the $L^p$ geometry. In connection with the OW, we show that one only needs to simply solve a univariate optimization problem to compute the GST, unlike the complex two-level optimization problem in OW. We empirically illustrate that GST is several-order faster than the OW. Moreover, we provide preliminary evidences on the advantages of GST for document classification and for several tasks in topological data analysis.} }
Endnote
%0 Conference Paper %T Generalized Sobolev Transport for Probability Measures on a Graph %A Tam Le %A Truyen Nguyen %A Kenji Fukumizu %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-le24a %I PMLR %P 26152--26174 %U https://proceedings.mlr.press/v235/le24a.html %V 235 %X We study the optimal transport (OT) problem for measures supported on a graph metric space. Recently, Le et al. (2022) leverage the graph structure and propose a variant of OT, namely Sobolev transport (ST), which yields a closed-form expression for a fast computation. However, ST is essentially coupled with the $L^p$ geometric structure within its definition which makes it nontrivial to utilize ST for other prior structures. In contrast, the classic OT has the flexibility to adapt to various geometric structures by modifying the underlying cost function. An important instance is the Orlicz-Wasserstein (OW) which moves beyond the $L^p$ structure by leveraging the Orlicz geometric structure. Comparing to the usage of standard $p$-order Wasserstein, OW remarkably helps to advance certain machine learning approaches. Nevertheless, OW brings up a new challenge on its computation due to its two-level optimization formulation. In this work, we leverage a specific class of convex functions for Orlicz structure to propose the generalized Sobolev transport (GST). GST encompasses the ST as its special case, and can be utilized for prior structures beyond the $L^p$ geometry. In connection with the OW, we show that one only needs to simply solve a univariate optimization problem to compute the GST, unlike the complex two-level optimization problem in OW. We empirically illustrate that GST is several-order faster than the OW. Moreover, we provide preliminary evidences on the advantages of GST for document classification and for several tasks in topological data analysis.
APA
Le, T., Nguyen, T. & Fukumizu, K.. (2024). Generalized Sobolev Transport for Probability Measures on a Graph. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:26152-26174 Available from https://proceedings.mlr.press/v235/le24a.html.

Related Material