Stationary Latent Weight Inference for Unreliable Observations from Online Test-Time Adaptation

Jae-Hong Lee, Joon-Hyuk Chang
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:26379-26395, 2024.

Abstract

In the rapidly evolving field of online test-time adaptation (OTTA), effectively managing distribution shifts is a pivotal concern. State-of-the-art OTTA methodologies often face limitations such as an inadequate target domain information integration, leading to significant issues like catastrophic forgetting and a lack of adaptability in dynamically changing environments. In this paper, we introduce a stationary latent weight inference (SLWI) framework, a novel approach to overcome these challenges. The proposed SLWI uniquely incorporates Bayesian filtering to continually track and update the target model weights along with the source model weight in online settings, thereby ensuring that the adapted model remains responsive to ongoing changes in the target domain. The proposed framework has the peculiar property to identify and backtrack nonlinear weights that exhibit local non-stationarity, thereby mitigating error propagation, a common pitfall of previous approaches. By integrating and refining information from both source and target domains, SLWI presents a robust solution to the persistent issue of domain adaptation in OTTA, significantly improving existing methodologies. The efficacy of SLWI is demonstrated through various experimental setups, showcasing its superior performance in diverse distribution shift scenarios.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-lee24b, title = {Stationary Latent Weight Inference for Unreliable Observations from Online Test-Time Adaptation}, author = {Lee, Jae-Hong and Chang, Joon-Hyuk}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {26379--26395}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/lee24b/lee24b.pdf}, url = {https://proceedings.mlr.press/v235/lee24b.html}, abstract = {In the rapidly evolving field of online test-time adaptation (OTTA), effectively managing distribution shifts is a pivotal concern. State-of-the-art OTTA methodologies often face limitations such as an inadequate target domain information integration, leading to significant issues like catastrophic forgetting and a lack of adaptability in dynamically changing environments. In this paper, we introduce a stationary latent weight inference (SLWI) framework, a novel approach to overcome these challenges. The proposed SLWI uniquely incorporates Bayesian filtering to continually track and update the target model weights along with the source model weight in online settings, thereby ensuring that the adapted model remains responsive to ongoing changes in the target domain. The proposed framework has the peculiar property to identify and backtrack nonlinear weights that exhibit local non-stationarity, thereby mitigating error propagation, a common pitfall of previous approaches. By integrating and refining information from both source and target domains, SLWI presents a robust solution to the persistent issue of domain adaptation in OTTA, significantly improving existing methodologies. The efficacy of SLWI is demonstrated through various experimental setups, showcasing its superior performance in diverse distribution shift scenarios.} }
Endnote
%0 Conference Paper %T Stationary Latent Weight Inference for Unreliable Observations from Online Test-Time Adaptation %A Jae-Hong Lee %A Joon-Hyuk Chang %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-lee24b %I PMLR %P 26379--26395 %U https://proceedings.mlr.press/v235/lee24b.html %V 235 %X In the rapidly evolving field of online test-time adaptation (OTTA), effectively managing distribution shifts is a pivotal concern. State-of-the-art OTTA methodologies often face limitations such as an inadequate target domain information integration, leading to significant issues like catastrophic forgetting and a lack of adaptability in dynamically changing environments. In this paper, we introduce a stationary latent weight inference (SLWI) framework, a novel approach to overcome these challenges. The proposed SLWI uniquely incorporates Bayesian filtering to continually track and update the target model weights along with the source model weight in online settings, thereby ensuring that the adapted model remains responsive to ongoing changes in the target domain. The proposed framework has the peculiar property to identify and backtrack nonlinear weights that exhibit local non-stationarity, thereby mitigating error propagation, a common pitfall of previous approaches. By integrating and refining information from both source and target domains, SLWI presents a robust solution to the persistent issue of domain adaptation in OTTA, significantly improving existing methodologies. The efficacy of SLWI is demonstrated through various experimental setups, showcasing its superior performance in diverse distribution shift scenarios.
APA
Lee, J. & Chang, J.. (2024). Stationary Latent Weight Inference for Unreliable Observations from Online Test-Time Adaptation. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:26379-26395 Available from https://proceedings.mlr.press/v235/lee24b.html.

Related Material