Accelerating Convergence of Score-Based Diffusion Models, Provably

Gen Li, Yu Huang, Timofey Efimov, Yuting Wei, Yuejie Chi, Yuxin Chen
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:27942-27954, 2024.

Abstract

Score-based diffusion models, while achieving remarkable empirical performance, often suffer from low sampling speed, due to extensive function evaluations needed during the sampling phase. Despite a flurry of recent activities towards speeding up diffusion generative modeling in practice, theoretical underpinnings for acceleration techniques remain severely limited. In this paper, we design novel training-free algorithms to accelerate popular deterministic (i.e., DDIM) and stochastic (i.e., DDPM) samplers. Our accelerated deterministic sampler converges at a rate $O(\frac{1}{{T}^2})$ with $T$ the number of steps, improving upon the $O(\frac{1}{T})$ rate for the DDIM sampler; and our accelerated stochastic sampler converges at a rate $O(\frac{1}{T})$, outperforming the rate $O(\frac{1}{\sqrt{T}})$ for the DDPM sampler. The design of our algorithms leverages insights from higher-order approximation, and shares similar intuitions as popular high-order ODE solvers like the DPM-Solver-2. Our theory accommodates $\ell_2$-accurate score estimates, and does not require log-concavity or smoothness on the target distribution.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-li24ad, title = {Accelerating Convergence of Score-Based Diffusion Models, Provably}, author = {Li, Gen and Huang, Yu and Efimov, Timofey and Wei, Yuting and Chi, Yuejie and Chen, Yuxin}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {27942--27954}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/li24ad/li24ad.pdf}, url = {https://proceedings.mlr.press/v235/li24ad.html}, abstract = {Score-based diffusion models, while achieving remarkable empirical performance, often suffer from low sampling speed, due to extensive function evaluations needed during the sampling phase. Despite a flurry of recent activities towards speeding up diffusion generative modeling in practice, theoretical underpinnings for acceleration techniques remain severely limited. In this paper, we design novel training-free algorithms to accelerate popular deterministic (i.e., DDIM) and stochastic (i.e., DDPM) samplers. Our accelerated deterministic sampler converges at a rate $O(\frac{1}{{T}^2})$ with $T$ the number of steps, improving upon the $O(\frac{1}{T})$ rate for the DDIM sampler; and our accelerated stochastic sampler converges at a rate $O(\frac{1}{T})$, outperforming the rate $O(\frac{1}{\sqrt{T}})$ for the DDPM sampler. The design of our algorithms leverages insights from higher-order approximation, and shares similar intuitions as popular high-order ODE solvers like the DPM-Solver-2. Our theory accommodates $\ell_2$-accurate score estimates, and does not require log-concavity or smoothness on the target distribution.} }
Endnote
%0 Conference Paper %T Accelerating Convergence of Score-Based Diffusion Models, Provably %A Gen Li %A Yu Huang %A Timofey Efimov %A Yuting Wei %A Yuejie Chi %A Yuxin Chen %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-li24ad %I PMLR %P 27942--27954 %U https://proceedings.mlr.press/v235/li24ad.html %V 235 %X Score-based diffusion models, while achieving remarkable empirical performance, often suffer from low sampling speed, due to extensive function evaluations needed during the sampling phase. Despite a flurry of recent activities towards speeding up diffusion generative modeling in practice, theoretical underpinnings for acceleration techniques remain severely limited. In this paper, we design novel training-free algorithms to accelerate popular deterministic (i.e., DDIM) and stochastic (i.e., DDPM) samplers. Our accelerated deterministic sampler converges at a rate $O(\frac{1}{{T}^2})$ with $T$ the number of steps, improving upon the $O(\frac{1}{T})$ rate for the DDIM sampler; and our accelerated stochastic sampler converges at a rate $O(\frac{1}{T})$, outperforming the rate $O(\frac{1}{\sqrt{T}})$ for the DDPM sampler. The design of our algorithms leverages insights from higher-order approximation, and shares similar intuitions as popular high-order ODE solvers like the DPM-Solver-2. Our theory accommodates $\ell_2$-accurate score estimates, and does not require log-concavity or smoothness on the target distribution.
APA
Li, G., Huang, Y., Efimov, T., Wei, Y., Chi, Y. & Chen, Y.. (2024). Accelerating Convergence of Score-Based Diffusion Models, Provably. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:27942-27954 Available from https://proceedings.mlr.press/v235/li24ad.html.

Related Material