[edit]
A Neural-Guided Dynamic Symbolic Network for Exploring Mathematical Expressions from Data
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:28222-28242, 2024.
Abstract
Symbolic regression (SR) is a powerful technique for discovering the underlying mathematical expressions from observed data. Inspired by the success of deep learning, recent deep generative SR methods have shown promising results. However, these methods face difficulties in processing high-dimensional problems and learning constants due to the large search space, and they don’t scale well to unseen problems. In this work, we propose DySymNet, a novel neural-guided Dynamic Symbolic Network for SR. Instead of searching for expressions within a large search space, we explore symbolic networks with various structures, guided by reinforcement learning, and optimize them to identify expressions that better-fitting the data. Based on extensive numerical experiments on low-dimensional public standard benchmarks and the well-known SRBench with more variables, DySymNet shows clear superiority over several representative baseline models. Open source code is available at https://github.com/AILWQ/DySymNet.