PID: Prompt-Independent Data Protection Against Latent Diffusion Models

Ang Li, Yichuan Mo, Mingjie Li, Yisen Wang
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:28421-28447, 2024.

Abstract

The few-shot fine-tuning of Latent Diffusion Models (LDMs) has enabled them to grasp new concepts from a limited number of images. However, given the vast amount of personal images accessible online, this capability raises critical concerns about civil privacy. While several previous defense methods have been developed to prevent such misuse of LDMs, they typically assume that the textual prompts used by data protectors exactly match those employed by data exploiters. In this paper, we first empirically demonstrate that breaking this assumption, i.e., in cases where discrepancies exist between the textual conditions used by protectors and exploiters, could substantially reduces the effectiveness of these defenses. Furthermore, considering the visual encoder’s independence from textual prompts, we delve into the visual encoder and thoroughly investigate how manipulating the visual encoder affects the few-shot fine-tuning process of LDMs. Drawing on these insights, we propose a simple yet effective method called Prompt-Independent Defense (PID) to safeguard privacy against LDMs. We show that PID can act as a strong privacy shield on its own while requiring significantly less computational power. We believe our studies, along with the comprehensive understanding and new defense method, provide a notable advance toward reliable data protection against LDMs.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-li24ay, title = {{PID}: Prompt-Independent Data Protection Against Latent Diffusion Models}, author = {Li, Ang and Mo, Yichuan and Li, Mingjie and Wang, Yisen}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {28421--28447}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/li24ay/li24ay.pdf}, url = {https://proceedings.mlr.press/v235/li24ay.html}, abstract = {The few-shot fine-tuning of Latent Diffusion Models (LDMs) has enabled them to grasp new concepts from a limited number of images. However, given the vast amount of personal images accessible online, this capability raises critical concerns about civil privacy. While several previous defense methods have been developed to prevent such misuse of LDMs, they typically assume that the textual prompts used by data protectors exactly match those employed by data exploiters. In this paper, we first empirically demonstrate that breaking this assumption, i.e., in cases where discrepancies exist between the textual conditions used by protectors and exploiters, could substantially reduces the effectiveness of these defenses. Furthermore, considering the visual encoder’s independence from textual prompts, we delve into the visual encoder and thoroughly investigate how manipulating the visual encoder affects the few-shot fine-tuning process of LDMs. Drawing on these insights, we propose a simple yet effective method called Prompt-Independent Defense (PID) to safeguard privacy against LDMs. We show that PID can act as a strong privacy shield on its own while requiring significantly less computational power. We believe our studies, along with the comprehensive understanding and new defense method, provide a notable advance toward reliable data protection against LDMs.} }
Endnote
%0 Conference Paper %T PID: Prompt-Independent Data Protection Against Latent Diffusion Models %A Ang Li %A Yichuan Mo %A Mingjie Li %A Yisen Wang %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-li24ay %I PMLR %P 28421--28447 %U https://proceedings.mlr.press/v235/li24ay.html %V 235 %X The few-shot fine-tuning of Latent Diffusion Models (LDMs) has enabled them to grasp new concepts from a limited number of images. However, given the vast amount of personal images accessible online, this capability raises critical concerns about civil privacy. While several previous defense methods have been developed to prevent such misuse of LDMs, they typically assume that the textual prompts used by data protectors exactly match those employed by data exploiters. In this paper, we first empirically demonstrate that breaking this assumption, i.e., in cases where discrepancies exist between the textual conditions used by protectors and exploiters, could substantially reduces the effectiveness of these defenses. Furthermore, considering the visual encoder’s independence from textual prompts, we delve into the visual encoder and thoroughly investigate how manipulating the visual encoder affects the few-shot fine-tuning process of LDMs. Drawing on these insights, we propose a simple yet effective method called Prompt-Independent Defense (PID) to safeguard privacy against LDMs. We show that PID can act as a strong privacy shield on its own while requiring significantly less computational power. We believe our studies, along with the comprehensive understanding and new defense method, provide a notable advance toward reliable data protection against LDMs.
APA
Li, A., Mo, Y., Li, M. & Wang, Y.. (2024). PID: Prompt-Independent Data Protection Against Latent Diffusion Models. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:28421-28447 Available from https://proceedings.mlr.press/v235/li24ay.html.

Related Material