Disentangled Graph Self-supervised Learning for Out-of-Distribution Generalization

Haoyang Li, Xin Wang, Zeyang Zhang, Haibo Chen, Ziwei Zhang, Wenwu Zhu
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:28890-28904, 2024.

Abstract

Graph out-of-distribution (OOD) generalization, aiming to generalize graph neural networks (GNNs) under distribution shifts between training and testing environments, has attracted ever-increasing attention recently. However, existing literature heavily relies on sufficient task-dependent graph labels, which are often scarce or even unavailable, limiting their applications in real-world scenarios. In this paper, we study the self-supervised graph OOD generalization problem, i.e., learning GNNs capable of achieving relatively stable performances under distribution shifts without graph labels. However, the problem remains largely unexplored, with the critical challenge that the invariant and variant information are highly entangled in graphs. To solve this problem, we propose an OOD generalized disentangled graph contrastive learning model (OOD-GCL), which is capable of learning disentangled graph-level representations with self-supervision that can handle distribution shifts between training and testing graph data. Specifically, we first introduce a disentangled graph encoder to map each input graph into the factorized graph representation. Then we propose a tailored disentangled invariant self-supervised learning module to maximize predictive ability of the representations and make sure the representations other than from one specific channel are invariant to the environments partitioned by this latent factor for excluding the information corresponding to this latent factor for disentanglement. Finally, the disentangled graph representations are fed into a linear predictor and finetuned for the downstream tasks. We provide comprehensive theoretical analyses to show that our model can learn disentangled graph representations and achieve OOD generalization. Extensive experiments on real-world datasets demonstrate the superiority of our model against state-of-the-art baselines under distribution shifts for graph classification tasks.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-li24br, title = {Disentangled Graph Self-supervised Learning for Out-of-Distribution Generalization}, author = {Li, Haoyang and Wang, Xin and Zhang, Zeyang and Chen, Haibo and Zhang, Ziwei and Zhu, Wenwu}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {28890--28904}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/li24br/li24br.pdf}, url = {https://proceedings.mlr.press/v235/li24br.html}, abstract = {Graph out-of-distribution (OOD) generalization, aiming to generalize graph neural networks (GNNs) under distribution shifts between training and testing environments, has attracted ever-increasing attention recently. However, existing literature heavily relies on sufficient task-dependent graph labels, which are often scarce or even unavailable, limiting their applications in real-world scenarios. In this paper, we study the self-supervised graph OOD generalization problem, i.e., learning GNNs capable of achieving relatively stable performances under distribution shifts without graph labels. However, the problem remains largely unexplored, with the critical challenge that the invariant and variant information are highly entangled in graphs. To solve this problem, we propose an OOD generalized disentangled graph contrastive learning model (OOD-GCL), which is capable of learning disentangled graph-level representations with self-supervision that can handle distribution shifts between training and testing graph data. Specifically, we first introduce a disentangled graph encoder to map each input graph into the factorized graph representation. Then we propose a tailored disentangled invariant self-supervised learning module to maximize predictive ability of the representations and make sure the representations other than from one specific channel are invariant to the environments partitioned by this latent factor for excluding the information corresponding to this latent factor for disentanglement. Finally, the disentangled graph representations are fed into a linear predictor and finetuned for the downstream tasks. We provide comprehensive theoretical analyses to show that our model can learn disentangled graph representations and achieve OOD generalization. Extensive experiments on real-world datasets demonstrate the superiority of our model against state-of-the-art baselines under distribution shifts for graph classification tasks.} }
Endnote
%0 Conference Paper %T Disentangled Graph Self-supervised Learning for Out-of-Distribution Generalization %A Haoyang Li %A Xin Wang %A Zeyang Zhang %A Haibo Chen %A Ziwei Zhang %A Wenwu Zhu %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-li24br %I PMLR %P 28890--28904 %U https://proceedings.mlr.press/v235/li24br.html %V 235 %X Graph out-of-distribution (OOD) generalization, aiming to generalize graph neural networks (GNNs) under distribution shifts between training and testing environments, has attracted ever-increasing attention recently. However, existing literature heavily relies on sufficient task-dependent graph labels, which are often scarce or even unavailable, limiting their applications in real-world scenarios. In this paper, we study the self-supervised graph OOD generalization problem, i.e., learning GNNs capable of achieving relatively stable performances under distribution shifts without graph labels. However, the problem remains largely unexplored, with the critical challenge that the invariant and variant information are highly entangled in graphs. To solve this problem, we propose an OOD generalized disentangled graph contrastive learning model (OOD-GCL), which is capable of learning disentangled graph-level representations with self-supervision that can handle distribution shifts between training and testing graph data. Specifically, we first introduce a disentangled graph encoder to map each input graph into the factorized graph representation. Then we propose a tailored disentangled invariant self-supervised learning module to maximize predictive ability of the representations and make sure the representations other than from one specific channel are invariant to the environments partitioned by this latent factor for excluding the information corresponding to this latent factor for disentanglement. Finally, the disentangled graph representations are fed into a linear predictor and finetuned for the downstream tasks. We provide comprehensive theoretical analyses to show that our model can learn disentangled graph representations and achieve OOD generalization. Extensive experiments on real-world datasets demonstrate the superiority of our model against state-of-the-art baselines under distribution shifts for graph classification tasks.
APA
Li, H., Wang, X., Zhang, Z., Chen, H., Zhang, Z. & Zhu, W.. (2024). Disentangled Graph Self-supervised Learning for Out-of-Distribution Generalization. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:28890-28904 Available from https://proceedings.mlr.press/v235/li24br.html.

Related Material