EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

Yuhui Li, Fangyun Wei, Chao Zhang, Hongyang Zhang
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:28935-28948, 2024.

Abstract

Autoregressive decoding makes the inference of Large Language Models (LLMs) time-consuming. In this paper, we reconsider speculative sampling and derive two key observations. Firstly, autoregression at the feature (second-to-top-layer) level is more straightforward than at the token level. Secondly, the inherent uncertainty in feature (second-to-top-layer) level autoregression constrains its performance. Based on these insights, we introduce EAGLE (Extrapolation Algorithm for Greater Language-model Efficiency), a simple yet highly efficient speculative sampling framework. By incorporating a token sequence advanced by one time step, EAGLE effectively resolves the uncertainty, enabling precise second-to-top-layer feature prediction with minimal overhead. We conducted comprehensive evaluations of EAGLE, including all models from the Vicuna and LLaMA2-Chat series, the MoE model Mixtral 8x7B Instruct, and tasks in dialogue, code generation, mathematical reasoning, and instruction following. For LLaMA2-Chat 70B, EAGLE achieved a latency speedup ratio of 2.7x-3.5x, doubled throughput, while maintaining the distribution of the generated text.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-li24bt, title = {{EAGLE}: Speculative Sampling Requires Rethinking Feature Uncertainty}, author = {Li, Yuhui and Wei, Fangyun and Zhang, Chao and Zhang, Hongyang}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {28935--28948}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/li24bt/li24bt.pdf}, url = {https://proceedings.mlr.press/v235/li24bt.html}, abstract = {Autoregressive decoding makes the inference of Large Language Models (LLMs) time-consuming. In this paper, we reconsider speculative sampling and derive two key observations. Firstly, autoregression at the feature (second-to-top-layer) level is more straightforward than at the token level. Secondly, the inherent uncertainty in feature (second-to-top-layer) level autoregression constrains its performance. Based on these insights, we introduce EAGLE (Extrapolation Algorithm for Greater Language-model Efficiency), a simple yet highly efficient speculative sampling framework. By incorporating a token sequence advanced by one time step, EAGLE effectively resolves the uncertainty, enabling precise second-to-top-layer feature prediction with minimal overhead. We conducted comprehensive evaluations of EAGLE, including all models from the Vicuna and LLaMA2-Chat series, the MoE model Mixtral 8x7B Instruct, and tasks in dialogue, code generation, mathematical reasoning, and instruction following. For LLaMA2-Chat 70B, EAGLE achieved a latency speedup ratio of 2.7x-3.5x, doubled throughput, while maintaining the distribution of the generated text.} }
Endnote
%0 Conference Paper %T EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty %A Yuhui Li %A Fangyun Wei %A Chao Zhang %A Hongyang Zhang %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-li24bt %I PMLR %P 28935--28948 %U https://proceedings.mlr.press/v235/li24bt.html %V 235 %X Autoregressive decoding makes the inference of Large Language Models (LLMs) time-consuming. In this paper, we reconsider speculative sampling and derive two key observations. Firstly, autoregression at the feature (second-to-top-layer) level is more straightforward than at the token level. Secondly, the inherent uncertainty in feature (second-to-top-layer) level autoregression constrains its performance. Based on these insights, we introduce EAGLE (Extrapolation Algorithm for Greater Language-model Efficiency), a simple yet highly efficient speculative sampling framework. By incorporating a token sequence advanced by one time step, EAGLE effectively resolves the uncertainty, enabling precise second-to-top-layer feature prediction with minimal overhead. We conducted comprehensive evaluations of EAGLE, including all models from the Vicuna and LLaMA2-Chat series, the MoE model Mixtral 8x7B Instruct, and tasks in dialogue, code generation, mathematical reasoning, and instruction following. For LLaMA2-Chat 70B, EAGLE achieved a latency speedup ratio of 2.7x-3.5x, doubled throughput, while maintaining the distribution of the generated text.
APA
Li, Y., Wei, F., Zhang, C. & Zhang, H.. (2024). EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:28935-28948 Available from https://proceedings.mlr.press/v235/li24bt.html.

Related Material