Debiased Distribution Compression

Lingxiao Li, Raaz Dwivedi, Lester Mackey
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:27675-27731, 2024.

Abstract

Modern compression methods can summarize a target distribution $\mathbb{P}$ more succinctly than i.i.d. sampling but require access to a low-bias input sequence like a Markov chain converging quickly to $\mathbb{P}$. We introduce a new suite of compression methods suitable for compression with biased input sequences. Given $n$ points targeting the wrong distribution and quadratic time, Stein kernel thinning (SKT) returns $\sqrt{n}$ equal-weighted points with $\widetilde{O}(n^{-1/2})$ maximum mean discrepancy (MMD) to $\mathbb{P}$. For larger-scale compression tasks, low-rank SKT achieves the same feat in sub-quadratic time using an adaptive low-rank debiasing procedure that may be of independent interest. For downstream tasks that support simplex or constant-preserving weights, Stein recombination and Stein Cholesky achieve even greater parsimony, matching the guarantees of SKT with as few as $\text{poly-log}(n)$ weighted points. Underlying these advances are new guarantees for the quality of simplex-weighted coresets, the spectral decay of kernel matrices, and the covering numbers of Stein kernel Hilbert spaces. In our experiments, our techniques provide succinct and accurate posterior summaries while overcoming biases due to burn-in, approximate Markov chain Monte Carlo, and tempering.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-li24r, title = {Debiased Distribution Compression}, author = {Li, Lingxiao and Dwivedi, Raaz and Mackey, Lester}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {27675--27731}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/li24r/li24r.pdf}, url = {https://proceedings.mlr.press/v235/li24r.html}, abstract = {Modern compression methods can summarize a target distribution $\mathbb{P}$ more succinctly than i.i.d. sampling but require access to a low-bias input sequence like a Markov chain converging quickly to $\mathbb{P}$. We introduce a new suite of compression methods suitable for compression with biased input sequences. Given $n$ points targeting the wrong distribution and quadratic time, Stein kernel thinning (SKT) returns $\sqrt{n}$ equal-weighted points with $\widetilde{O}(n^{-1/2})$ maximum mean discrepancy (MMD) to $\mathbb{P}$. For larger-scale compression tasks, low-rank SKT achieves the same feat in sub-quadratic time using an adaptive low-rank debiasing procedure that may be of independent interest. For downstream tasks that support simplex or constant-preserving weights, Stein recombination and Stein Cholesky achieve even greater parsimony, matching the guarantees of SKT with as few as $\text{poly-log}(n)$ weighted points. Underlying these advances are new guarantees for the quality of simplex-weighted coresets, the spectral decay of kernel matrices, and the covering numbers of Stein kernel Hilbert spaces. In our experiments, our techniques provide succinct and accurate posterior summaries while overcoming biases due to burn-in, approximate Markov chain Monte Carlo, and tempering.} }
Endnote
%0 Conference Paper %T Debiased Distribution Compression %A Lingxiao Li %A Raaz Dwivedi %A Lester Mackey %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-li24r %I PMLR %P 27675--27731 %U https://proceedings.mlr.press/v235/li24r.html %V 235 %X Modern compression methods can summarize a target distribution $\mathbb{P}$ more succinctly than i.i.d. sampling but require access to a low-bias input sequence like a Markov chain converging quickly to $\mathbb{P}$. We introduce a new suite of compression methods suitable for compression with biased input sequences. Given $n$ points targeting the wrong distribution and quadratic time, Stein kernel thinning (SKT) returns $\sqrt{n}$ equal-weighted points with $\widetilde{O}(n^{-1/2})$ maximum mean discrepancy (MMD) to $\mathbb{P}$. For larger-scale compression tasks, low-rank SKT achieves the same feat in sub-quadratic time using an adaptive low-rank debiasing procedure that may be of independent interest. For downstream tasks that support simplex or constant-preserving weights, Stein recombination and Stein Cholesky achieve even greater parsimony, matching the guarantees of SKT with as few as $\text{poly-log}(n)$ weighted points. Underlying these advances are new guarantees for the quality of simplex-weighted coresets, the spectral decay of kernel matrices, and the covering numbers of Stein kernel Hilbert spaces. In our experiments, our techniques provide succinct and accurate posterior summaries while overcoming biases due to burn-in, approximate Markov chain Monte Carlo, and tempering.
APA
Li, L., Dwivedi, R. & Mackey, L.. (2024). Debiased Distribution Compression. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:27675-27731 Available from https://proceedings.mlr.press/v235/li24r.html.

Related Material