Robustness of Deep Learning for Accelerated MRI: Benefits of Diverse Training Data

Kang Lin, Reinhard Heckel
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:30018-30041, 2024.

Abstract

Deep learning based methods for image reconstruction are state-of-the-art for a variety of imaging tasks. However, neural networks often perform worse if the training data differs significantly from the data they are applied to. For example, a model trained for accelerated magnetic resonance imaging (MRI) on one scanner performs worse on another scanner. In this work, we investigate the impact of the training data on a model’s performance and robustness for accelerated MRI. We find that models trained on the combination of various data distributions, such as those obtained from different MRI scanners and anatomies, exhibit robustness equal or superior to models trained on the best single distribution for a specific target distribution. Thus training on such diverse data tends to improve robustness. Furthermore, training on such a diverse dataset does not compromise in-distribution performance, i.e., a model trained on diverse data yields in-distribution performance at least as good as models trained on the more narrow individual distributions. Our results suggest that training a model for imaging on a variety of distributions tends to yield a more effective and robust model than maintaining separate models for individual distributions.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-lin24h, title = {Robustness of Deep Learning for Accelerated {MRI}: Benefits of Diverse Training Data}, author = {Lin, Kang and Heckel, Reinhard}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {30018--30041}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/lin24h/lin24h.pdf}, url = {https://proceedings.mlr.press/v235/lin24h.html}, abstract = {Deep learning based methods for image reconstruction are state-of-the-art for a variety of imaging tasks. However, neural networks often perform worse if the training data differs significantly from the data they are applied to. For example, a model trained for accelerated magnetic resonance imaging (MRI) on one scanner performs worse on another scanner. In this work, we investigate the impact of the training data on a model’s performance and robustness for accelerated MRI. We find that models trained on the combination of various data distributions, such as those obtained from different MRI scanners and anatomies, exhibit robustness equal or superior to models trained on the best single distribution for a specific target distribution. Thus training on such diverse data tends to improve robustness. Furthermore, training on such a diverse dataset does not compromise in-distribution performance, i.e., a model trained on diverse data yields in-distribution performance at least as good as models trained on the more narrow individual distributions. Our results suggest that training a model for imaging on a variety of distributions tends to yield a more effective and robust model than maintaining separate models for individual distributions.} }
Endnote
%0 Conference Paper %T Robustness of Deep Learning for Accelerated MRI: Benefits of Diverse Training Data %A Kang Lin %A Reinhard Heckel %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-lin24h %I PMLR %P 30018--30041 %U https://proceedings.mlr.press/v235/lin24h.html %V 235 %X Deep learning based methods for image reconstruction are state-of-the-art for a variety of imaging tasks. However, neural networks often perform worse if the training data differs significantly from the data they are applied to. For example, a model trained for accelerated magnetic resonance imaging (MRI) on one scanner performs worse on another scanner. In this work, we investigate the impact of the training data on a model’s performance and robustness for accelerated MRI. We find that models trained on the combination of various data distributions, such as those obtained from different MRI scanners and anatomies, exhibit robustness equal or superior to models trained on the best single distribution for a specific target distribution. Thus training on such diverse data tends to improve robustness. Furthermore, training on such a diverse dataset does not compromise in-distribution performance, i.e., a model trained on diverse data yields in-distribution performance at least as good as models trained on the more narrow individual distributions. Our results suggest that training a model for imaging on a variety of distributions tends to yield a more effective and robust model than maintaining separate models for individual distributions.
APA
Lin, K. & Heckel, R.. (2024). Robustness of Deep Learning for Accelerated MRI: Benefits of Diverse Training Data. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:30018-30041 Available from https://proceedings.mlr.press/v235/lin24h.html.

Related Material