Revisiting Context Aggregation for Image Matting

Qinglin Liu, Xiaoqian Lv, Quanling Meng, Zonglin Li, Xiangyuan Lan, Shuo Yang, Shengping Zhang, Liqiang Nie
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:31629-31644, 2024.

Abstract

Traditional studies emphasize the significance of context information in improving matting performance. Consequently, deep learning-based matting methods delve into designing pooling or affinity-based context aggregation modules to achieve superior results. However, these modules cannot well handle the context scale shift caused by the difference in image size during training and inference, resulting in matting performance degradation. In this paper, we revisit the context aggregation mechanisms of matting networks and find that a basic encoder-decoder network without any context aggregation modules can actually learn more universal context aggregation, thereby achieving higher matting performance compared to existing methods. Building on this insight, we present AEMatter, a matting network that is straightforward yet very effective. AEMatter adopts a Hybrid-Transformer backbone with appearance-enhanced axis-wise learning (AEAL) blocks to build a basic network with strong context aggregation learning capability. Furthermore, AEMatter leverages a large image training strategy to assist the network in learning context aggregation from data. Extensive experiments on five popular matting datasets demonstrate that the proposed AEMatter outperforms state-of-the-art matting methods by a large margin. The source code is available at https://github.com/aipixel/AEMatter.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-liu24as, title = {Revisiting Context Aggregation for Image Matting}, author = {Liu, Qinglin and Lv, Xiaoqian and Meng, Quanling and Li, Zonglin and Lan, Xiangyuan and Yang, Shuo and Zhang, Shengping and Nie, Liqiang}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {31629--31644}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/liu24as/liu24as.pdf}, url = {https://proceedings.mlr.press/v235/liu24as.html}, abstract = {Traditional studies emphasize the significance of context information in improving matting performance. Consequently, deep learning-based matting methods delve into designing pooling or affinity-based context aggregation modules to achieve superior results. However, these modules cannot well handle the context scale shift caused by the difference in image size during training and inference, resulting in matting performance degradation. In this paper, we revisit the context aggregation mechanisms of matting networks and find that a basic encoder-decoder network without any context aggregation modules can actually learn more universal context aggregation, thereby achieving higher matting performance compared to existing methods. Building on this insight, we present AEMatter, a matting network that is straightforward yet very effective. AEMatter adopts a Hybrid-Transformer backbone with appearance-enhanced axis-wise learning (AEAL) blocks to build a basic network with strong context aggregation learning capability. Furthermore, AEMatter leverages a large image training strategy to assist the network in learning context aggregation from data. Extensive experiments on five popular matting datasets demonstrate that the proposed AEMatter outperforms state-of-the-art matting methods by a large margin. The source code is available at https://github.com/aipixel/AEMatter.} }
Endnote
%0 Conference Paper %T Revisiting Context Aggregation for Image Matting %A Qinglin Liu %A Xiaoqian Lv %A Quanling Meng %A Zonglin Li %A Xiangyuan Lan %A Shuo Yang %A Shengping Zhang %A Liqiang Nie %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-liu24as %I PMLR %P 31629--31644 %U https://proceedings.mlr.press/v235/liu24as.html %V 235 %X Traditional studies emphasize the significance of context information in improving matting performance. Consequently, deep learning-based matting methods delve into designing pooling or affinity-based context aggregation modules to achieve superior results. However, these modules cannot well handle the context scale shift caused by the difference in image size during training and inference, resulting in matting performance degradation. In this paper, we revisit the context aggregation mechanisms of matting networks and find that a basic encoder-decoder network without any context aggregation modules can actually learn more universal context aggregation, thereby achieving higher matting performance compared to existing methods. Building on this insight, we present AEMatter, a matting network that is straightforward yet very effective. AEMatter adopts a Hybrid-Transformer backbone with appearance-enhanced axis-wise learning (AEAL) blocks to build a basic network with strong context aggregation learning capability. Furthermore, AEMatter leverages a large image training strategy to assist the network in learning context aggregation from data. Extensive experiments on five popular matting datasets demonstrate that the proposed AEMatter outperforms state-of-the-art matting methods by a large margin. The source code is available at https://github.com/aipixel/AEMatter.
APA
Liu, Q., Lv, X., Meng, Q., Li, Z., Lan, X., Yang, S., Zhang, S. & Nie, L.. (2024). Revisiting Context Aggregation for Image Matting. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:31629-31644 Available from https://proceedings.mlr.press/v235/liu24as.html.

Related Material