Fast Decision Boundary based Out-of-Distribution Detector

Litian Liu, Yao Qin
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:31728-31746, 2024.

Abstract

Efficient and effective Out-of-Distribution (OOD) detection is essential for the safe deployment of AI systems. Existing feature space methods, while effective, often incur significant computational overhead due to their reliance on auxiliary models built from training features. In this paper, we propose a computationally-efficient OOD detector without using auxiliary models while still leveraging the rich information embedded in the feature space. Specifically, we detect OOD samples based on their feature distances to decision boundaries. To minimize computational cost, we introduce an efficient closed-form estimation, analytically proven to tightly lower bound the distance. Based on our estimation, we discover that In-Distribution (ID) features tend to be further from decision boundaries than OOD features. Additionally, ID and OOD samples are better separated when compared at equal deviation levels from the mean of training features. By regularizing the distances to decision boundaries based on feature deviation from the mean, we develop a hyperparameter-free, auxiliary model-free OOD detector. Our method matches or surpasses the effectiveness of state-of-the-art methods in extensive experiments while incurring negligible overhead in inference latency. Overall, our approach significantly improves the efficiency-effectiveness trade-off in OOD detection. Code is available at: https://github.com/litianliu/fDBD-OOD.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-liu24ax, title = {Fast Decision Boundary based Out-of-Distribution Detector}, author = {Liu, Litian and Qin, Yao}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {31728--31746}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/liu24ax/liu24ax.pdf}, url = {https://proceedings.mlr.press/v235/liu24ax.html}, abstract = {Efficient and effective Out-of-Distribution (OOD) detection is essential for the safe deployment of AI systems. Existing feature space methods, while effective, often incur significant computational overhead due to their reliance on auxiliary models built from training features. In this paper, we propose a computationally-efficient OOD detector without using auxiliary models while still leveraging the rich information embedded in the feature space. Specifically, we detect OOD samples based on their feature distances to decision boundaries. To minimize computational cost, we introduce an efficient closed-form estimation, analytically proven to tightly lower bound the distance. Based on our estimation, we discover that In-Distribution (ID) features tend to be further from decision boundaries than OOD features. Additionally, ID and OOD samples are better separated when compared at equal deviation levels from the mean of training features. By regularizing the distances to decision boundaries based on feature deviation from the mean, we develop a hyperparameter-free, auxiliary model-free OOD detector. Our method matches or surpasses the effectiveness of state-of-the-art methods in extensive experiments while incurring negligible overhead in inference latency. Overall, our approach significantly improves the efficiency-effectiveness trade-off in OOD detection. Code is available at: https://github.com/litianliu/fDBD-OOD.} }
Endnote
%0 Conference Paper %T Fast Decision Boundary based Out-of-Distribution Detector %A Litian Liu %A Yao Qin %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-liu24ax %I PMLR %P 31728--31746 %U https://proceedings.mlr.press/v235/liu24ax.html %V 235 %X Efficient and effective Out-of-Distribution (OOD) detection is essential for the safe deployment of AI systems. Existing feature space methods, while effective, often incur significant computational overhead due to their reliance on auxiliary models built from training features. In this paper, we propose a computationally-efficient OOD detector without using auxiliary models while still leveraging the rich information embedded in the feature space. Specifically, we detect OOD samples based on their feature distances to decision boundaries. To minimize computational cost, we introduce an efficient closed-form estimation, analytically proven to tightly lower bound the distance. Based on our estimation, we discover that In-Distribution (ID) features tend to be further from decision boundaries than OOD features. Additionally, ID and OOD samples are better separated when compared at equal deviation levels from the mean of training features. By regularizing the distances to decision boundaries based on feature deviation from the mean, we develop a hyperparameter-free, auxiliary model-free OOD detector. Our method matches or surpasses the effectiveness of state-of-the-art methods in extensive experiments while incurring negligible overhead in inference latency. Overall, our approach significantly improves the efficiency-effectiveness trade-off in OOD detection. Code is available at: https://github.com/litianliu/fDBD-OOD.
APA
Liu, L. & Qin, Y.. (2024). Fast Decision Boundary based Out-of-Distribution Detector. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:31728-31746 Available from https://proceedings.mlr.press/v235/liu24ax.html.

Related Material