Generative Marginalization Models

Sulin Liu, Peter Ramadge, Ryan P Adams
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:31773-31807, 2024.

Abstract

We introduce marginalization models (MAMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling by explicitly modeling all induced marginal distributions. Marginalization models enable fast approximation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of arbitrary marginal inference models, such as any-order autoregressive models. MAMs also address the scalability bottleneck encountered in training any-order generative models for high-dimensional problems under the context of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized log-probability function such as energy or reward function). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including images, text, physical systems, and molecules, for maximum likelihood and energy-based training settings. MAMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MAMs enable any-order generative modeling of high-dimensional problems beyond the scale of previous methods. Code is available at github.com/PrincetonLIPS/MaM.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-liu24az, title = {Generative Marginalization Models}, author = {Liu, Sulin and Ramadge, Peter and Adams, Ryan P}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {31773--31807}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/liu24az/liu24az.pdf}, url = {https://proceedings.mlr.press/v235/liu24az.html}, abstract = {We introduce marginalization models (MAMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling by explicitly modeling all induced marginal distributions. Marginalization models enable fast approximation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of arbitrary marginal inference models, such as any-order autoregressive models. MAMs also address the scalability bottleneck encountered in training any-order generative models for high-dimensional problems under the context of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized log-probability function such as energy or reward function). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including images, text, physical systems, and molecules, for maximum likelihood and energy-based training settings. MAMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MAMs enable any-order generative modeling of high-dimensional problems beyond the scale of previous methods. Code is available at github.com/PrincetonLIPS/MaM.} }
Endnote
%0 Conference Paper %T Generative Marginalization Models %A Sulin Liu %A Peter Ramadge %A Ryan P Adams %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-liu24az %I PMLR %P 31773--31807 %U https://proceedings.mlr.press/v235/liu24az.html %V 235 %X We introduce marginalization models (MAMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling by explicitly modeling all induced marginal distributions. Marginalization models enable fast approximation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of arbitrary marginal inference models, such as any-order autoregressive models. MAMs also address the scalability bottleneck encountered in training any-order generative models for high-dimensional problems under the context of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized log-probability function such as energy or reward function). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including images, text, physical systems, and molecules, for maximum likelihood and energy-based training settings. MAMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MAMs enable any-order generative modeling of high-dimensional problems beyond the scale of previous methods. Code is available at github.com/PrincetonLIPS/MaM.
APA
Liu, S., Ramadge, P. & Adams, R.P.. (2024). Generative Marginalization Models. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:31773-31807 Available from https://proceedings.mlr.press/v235/liu24az.html.

Related Material