HumanTOMATO: Text-aligned Whole-body Motion Generation

Shunlin Lu, Ling-Hao Chen, Ailing Zeng, Jing Lin, Ruimao Zhang, Lei Zhang, Heung-Yeung Shum
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:32939-32977, 2024.

Abstract

This work targets a novel text-driven whole-body motion generation task, which takes a given textual description as input and aims at generating high-quality, diverse, and coherent facial expressions, hand gestures, and body motions simultaneously. Previous works on text-driven motion generation tasks mainly have two limitations: they ignore the key role of fine-grained hand and face controlling in vivid whole-body motion generation, and lack a good alignment between text and motion. To address such limitations, we propose a Text-aligned whOle-body Motion generATiOn framework, named HumanTOMATO, which is the first attempt to our knowledge towards applicable holistic motion generation in this research area. To tackle this challenging task, our solution includes two key designs: (1) a Holistic Hierarchical VQ-VAE (aka H${}^{2}$VQ) and a Hierarchical-GPT for fine-grained body and hand motion reconstruction and generation with two structured codebooks; and (2) a pre-trained text-motion-alignment model to help generated motion align with the input textual description explicitly. Comprehensive experiments verify that our model has significant advantages in both the quality of generated motions and their alignment with text.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-lu24b, title = {{H}uman{TOMATO}: Text-aligned Whole-body Motion Generation}, author = {Lu, Shunlin and Chen, Ling-Hao and Zeng, Ailing and Lin, Jing and Zhang, Ruimao and Zhang, Lei and Shum, Heung-Yeung}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {32939--32977}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/lu24b/lu24b.pdf}, url = {https://proceedings.mlr.press/v235/lu24b.html}, abstract = {This work targets a novel text-driven whole-body motion generation task, which takes a given textual description as input and aims at generating high-quality, diverse, and coherent facial expressions, hand gestures, and body motions simultaneously. Previous works on text-driven motion generation tasks mainly have two limitations: they ignore the key role of fine-grained hand and face controlling in vivid whole-body motion generation, and lack a good alignment between text and motion. To address such limitations, we propose a Text-aligned whOle-body Motion generATiOn framework, named HumanTOMATO, which is the first attempt to our knowledge towards applicable holistic motion generation in this research area. To tackle this challenging task, our solution includes two key designs: (1) a Holistic Hierarchical VQ-VAE (aka H${}^{2}$VQ) and a Hierarchical-GPT for fine-grained body and hand motion reconstruction and generation with two structured codebooks; and (2) a pre-trained text-motion-alignment model to help generated motion align with the input textual description explicitly. Comprehensive experiments verify that our model has significant advantages in both the quality of generated motions and their alignment with text.} }
Endnote
%0 Conference Paper %T HumanTOMATO: Text-aligned Whole-body Motion Generation %A Shunlin Lu %A Ling-Hao Chen %A Ailing Zeng %A Jing Lin %A Ruimao Zhang %A Lei Zhang %A Heung-Yeung Shum %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-lu24b %I PMLR %P 32939--32977 %U https://proceedings.mlr.press/v235/lu24b.html %V 235 %X This work targets a novel text-driven whole-body motion generation task, which takes a given textual description as input and aims at generating high-quality, diverse, and coherent facial expressions, hand gestures, and body motions simultaneously. Previous works on text-driven motion generation tasks mainly have two limitations: they ignore the key role of fine-grained hand and face controlling in vivid whole-body motion generation, and lack a good alignment between text and motion. To address such limitations, we propose a Text-aligned whOle-body Motion generATiOn framework, named HumanTOMATO, which is the first attempt to our knowledge towards applicable holistic motion generation in this research area. To tackle this challenging task, our solution includes two key designs: (1) a Holistic Hierarchical VQ-VAE (aka H${}^{2}$VQ) and a Hierarchical-GPT for fine-grained body and hand motion reconstruction and generation with two structured codebooks; and (2) a pre-trained text-motion-alignment model to help generated motion align with the input textual description explicitly. Comprehensive experiments verify that our model has significant advantages in both the quality of generated motions and their alignment with text.
APA
Lu, S., Chen, L., Zeng, A., Lin, J., Zhang, R., Zhang, L. & Shum, H.. (2024). HumanTOMATO: Text-aligned Whole-body Motion Generation. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:32939-32977 Available from https://proceedings.mlr.press/v235/lu24b.html.

Related Material