[edit]
Rethinking Momentum Knowledge Distillation in Online Continual Learning
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:35607-35622, 2024.
Abstract
Online Continual Learning (OCL) addresses the problem of training neural networks on a continuous data stream where multiple classification tasks emerge in sequence. In contrast to offline Continual Learning, data can be seen only once in OCL, which is a very severe constraint. In this context, replay-based strategies have achieved impressive results and most state-of-the-art approaches heavily depend on them. While Knowledge Distillation (KD) has been extensively used in offline Continual Learning, it remains under-exploited in OCL, despite its high potential. In this paper, we analyze the challenges in applying KD to OCL and give empirical justifications. We introduce a direct yet effective methodology for applying Momentum Knowledge Distillation (MKD) to many flagship OCL methods and demonstrate its capabilities to enhance existing approaches. In addition to improving existing state-of-the-art accuracy by more than 10 points on ImageNet100, we shed light on MKD internal mechanics and impacts during training in OCL. We argue that similar to replay, MKD should be considered a central component of OCL. The code is available at https://github.com/Nicolas1203/mkd_ocl.