SiBBlInGS: Similarity-driven Building-Block Inference using Graphs across States

Noga Mudrik, Gal Mishne, Adam Shabti Charles
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:36504-36530, 2024.

Abstract

Time series data across scientific domains are often collected under distinct states (e.g., tasks), wherein latent processes (e.g., biological factors) create complex inter- and intra-state variability. A key approach to capture this complexity is to uncover fundamental interpretable units within the data, Building Blocks (BBs), which modulate their activity and adjust their structure across observations. Existing methods for identifying BBs in multi-way data often overlook inter- vs. intra-state variability, produce uninterpretable components, or do not align with properties of real-world data, such as missing samples and sessions of different duration. Here, we present a framework for Similarity-driven Building Block Inference using Graphs across States (SiBBlInGS). SiBBlInGS offers a graph-based dictionary learning approach for discovering sparse BBs along with their temporal traces, based on co-activity patterns and inter- vs. intra-state relationships. Moreover, SiBBlInGS captures per-trial temporal variability and controlled cross-state structural BB adaptations, identifies state-specific vs. state-invariant components, and accommodates variability in the number and duration of observed sessions across states. We demonstrate SiBBlInGS’s ability to reveal insights into complex phenomena as well as its robustness to noise and missing samples through several synthetic and real-world examples, including web search and neural data.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-mudrik24a, title = {{S}i{BB}l{I}n{GS}: Similarity-driven Building-Block Inference using Graphs across States}, author = {Mudrik, Noga and Mishne, Gal and Charles, Adam Shabti}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {36504--36530}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/mudrik24a/mudrik24a.pdf}, url = {https://proceedings.mlr.press/v235/mudrik24a.html}, abstract = {Time series data across scientific domains are often collected under distinct states (e.g., tasks), wherein latent processes (e.g., biological factors) create complex inter- and intra-state variability. A key approach to capture this complexity is to uncover fundamental interpretable units within the data, Building Blocks (BBs), which modulate their activity and adjust their structure across observations. Existing methods for identifying BBs in multi-way data often overlook inter- vs. intra-state variability, produce uninterpretable components, or do not align with properties of real-world data, such as missing samples and sessions of different duration. Here, we present a framework for Similarity-driven Building Block Inference using Graphs across States (SiBBlInGS). SiBBlInGS offers a graph-based dictionary learning approach for discovering sparse BBs along with their temporal traces, based on co-activity patterns and inter- vs. intra-state relationships. Moreover, SiBBlInGS captures per-trial temporal variability and controlled cross-state structural BB adaptations, identifies state-specific vs. state-invariant components, and accommodates variability in the number and duration of observed sessions across states. We demonstrate SiBBlInGS’s ability to reveal insights into complex phenomena as well as its robustness to noise and missing samples through several synthetic and real-world examples, including web search and neural data.} }
Endnote
%0 Conference Paper %T SiBBlInGS: Similarity-driven Building-Block Inference using Graphs across States %A Noga Mudrik %A Gal Mishne %A Adam Shabti Charles %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-mudrik24a %I PMLR %P 36504--36530 %U https://proceedings.mlr.press/v235/mudrik24a.html %V 235 %X Time series data across scientific domains are often collected under distinct states (e.g., tasks), wherein latent processes (e.g., biological factors) create complex inter- and intra-state variability. A key approach to capture this complexity is to uncover fundamental interpretable units within the data, Building Blocks (BBs), which modulate their activity and adjust their structure across observations. Existing methods for identifying BBs in multi-way data often overlook inter- vs. intra-state variability, produce uninterpretable components, or do not align with properties of real-world data, such as missing samples and sessions of different duration. Here, we present a framework for Similarity-driven Building Block Inference using Graphs across States (SiBBlInGS). SiBBlInGS offers a graph-based dictionary learning approach for discovering sparse BBs along with their temporal traces, based on co-activity patterns and inter- vs. intra-state relationships. Moreover, SiBBlInGS captures per-trial temporal variability and controlled cross-state structural BB adaptations, identifies state-specific vs. state-invariant components, and accommodates variability in the number and duration of observed sessions across states. We demonstrate SiBBlInGS’s ability to reveal insights into complex phenomena as well as its robustness to noise and missing samples through several synthetic and real-world examples, including web search and neural data.
APA
Mudrik, N., Mishne, G. & Charles, A.S.. (2024). SiBBlInGS: Similarity-driven Building-Block Inference using Graphs across States. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:36504-36530 Available from https://proceedings.mlr.press/v235/mudrik24a.html.

Related Material