Turnstile $\ell_p$ leverage score sampling with applications

Alexander Munteanu, Simon Omlor
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:36797-36828, 2024.

Abstract

The turnstile data stream model offers the most flexible framework where data can be manipulated dynamically, i.e., rows, columns, and even single entries of an input matrix can be added, deleted, or updated multiple times in a data stream. We develop a novel algorithm for sampling rows $a_i$ of a matrix $A\in\mathbb{R}^{n\times d}$, proportional to their $\ell_p$ norm, when $A$ is presented in a turnstile data stream. Our algorithm not only returns the set of sampled row indexes, it also returns slightly perturbed rows $\tilde{a}_i \approx a_i$, and approximates their sampling probabilities up to $\varepsilon$ relative error. When combined with preconditioning techniques, our algorithm extends to $\ell_p$ leverage score sampling over turnstile data streams. With these properties in place, it allows us to simulate subsampling constructions of coresets for important regression problems to operate over turnstile data streams with very little overhead compared to their respective off-line subsampling algorithms. For logistic regression, our framework yields the first algorithm that achieves a $(1+\varepsilon)$ approximation and works in a turnstile data stream using polynomial sketch/subsample size, improving over $O(1)$ approximations, or $\exp(1/\varepsilon)$ sketch size of previous work. We compare experimentally to plain oblivious sketching and plain leverage score sampling algorithms for $\ell_p$ and logistic regression.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-munteanu24b, title = {Turnstile $\ell_p$ leverage score sampling with applications}, author = {Munteanu, Alexander and Omlor, Simon}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {36797--36828}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/munteanu24b/munteanu24b.pdf}, url = {https://proceedings.mlr.press/v235/munteanu24b.html}, abstract = {The turnstile data stream model offers the most flexible framework where data can be manipulated dynamically, i.e., rows, columns, and even single entries of an input matrix can be added, deleted, or updated multiple times in a data stream. We develop a novel algorithm for sampling rows $a_i$ of a matrix $A\in\mathbb{R}^{n\times d}$, proportional to their $\ell_p$ norm, when $A$ is presented in a turnstile data stream. Our algorithm not only returns the set of sampled row indexes, it also returns slightly perturbed rows $\tilde{a}_i \approx a_i$, and approximates their sampling probabilities up to $\varepsilon$ relative error. When combined with preconditioning techniques, our algorithm extends to $\ell_p$ leverage score sampling over turnstile data streams. With these properties in place, it allows us to simulate subsampling constructions of coresets for important regression problems to operate over turnstile data streams with very little overhead compared to their respective off-line subsampling algorithms. For logistic regression, our framework yields the first algorithm that achieves a $(1+\varepsilon)$ approximation and works in a turnstile data stream using polynomial sketch/subsample size, improving over $O(1)$ approximations, or $\exp(1/\varepsilon)$ sketch size of previous work. We compare experimentally to plain oblivious sketching and plain leverage score sampling algorithms for $\ell_p$ and logistic regression.} }
Endnote
%0 Conference Paper %T Turnstile $\ell_p$ leverage score sampling with applications %A Alexander Munteanu %A Simon Omlor %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-munteanu24b %I PMLR %P 36797--36828 %U https://proceedings.mlr.press/v235/munteanu24b.html %V 235 %X The turnstile data stream model offers the most flexible framework where data can be manipulated dynamically, i.e., rows, columns, and even single entries of an input matrix can be added, deleted, or updated multiple times in a data stream. We develop a novel algorithm for sampling rows $a_i$ of a matrix $A\in\mathbb{R}^{n\times d}$, proportional to their $\ell_p$ norm, when $A$ is presented in a turnstile data stream. Our algorithm not only returns the set of sampled row indexes, it also returns slightly perturbed rows $\tilde{a}_i \approx a_i$, and approximates their sampling probabilities up to $\varepsilon$ relative error. When combined with preconditioning techniques, our algorithm extends to $\ell_p$ leverage score sampling over turnstile data streams. With these properties in place, it allows us to simulate subsampling constructions of coresets for important regression problems to operate over turnstile data streams with very little overhead compared to their respective off-line subsampling algorithms. For logistic regression, our framework yields the first algorithm that achieves a $(1+\varepsilon)$ approximation and works in a turnstile data stream using polynomial sketch/subsample size, improving over $O(1)$ approximations, or $\exp(1/\varepsilon)$ sketch size of previous work. We compare experimentally to plain oblivious sketching and plain leverage score sampling algorithms for $\ell_p$ and logistic regression.
APA
Munteanu, A. & Omlor, S.. (2024). Turnstile $\ell_p$ leverage score sampling with applications. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:36797-36828 Available from https://proceedings.mlr.press/v235/munteanu24b.html.

Related Material