Best Arm Identification for Stochastic Rising Bandits

Marco Mussi, Alessandro Montenegro, Francesco Trovò, Marcello Restelli, Alberto Maria Metelli
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:36953-36989, 2024.

Abstract

Stochastic Rising Bandits (SRBs) model sequential decision-making problems in which the expected reward of the available options increases every time they are selected. This setting captures a wide range of scenarios in which the available options are learning entities whose performance improves (in expectation) over time (e.g., online best model selection). While previous works addressed the regret minimization problem, this paper focuses on the fixed-budget Best Arm Identification (BAI) problem for SRBs. In this scenario, given a fixed budget of rounds, we are asked to provide a recommendation about the best option at the end of the identification process. We propose two algorithms to tackle the above-mentioned setting, namely R-UCBE, which resorts to a UCB-like approach, and R-SR, which employs a successive reject procedure. Then, we prove that, with a sufficiently large budget, they provide guarantees on the probability of properly identifying the optimal option at the end of the learning process and on the simple regret. Furthermore, we derive a lower bound on the error probability, matched by our R-SR (up to constants), and illustrate how the need for a sufficiently large budget is unavoidable in the SRB setting. Finally, we numerically validate the proposed algorithms in both synthetic and realistic environments.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-mussi24b, title = {Best Arm Identification for Stochastic Rising Bandits}, author = {Mussi, Marco and Montenegro, Alessandro and Trov\`{o}, Francesco and Restelli, Marcello and Metelli, Alberto Maria}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {36953--36989}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/mussi24b/mussi24b.pdf}, url = {https://proceedings.mlr.press/v235/mussi24b.html}, abstract = {Stochastic Rising Bandits (SRBs) model sequential decision-making problems in which the expected reward of the available options increases every time they are selected. This setting captures a wide range of scenarios in which the available options are learning entities whose performance improves (in expectation) over time (e.g., online best model selection). While previous works addressed the regret minimization problem, this paper focuses on the fixed-budget Best Arm Identification (BAI) problem for SRBs. In this scenario, given a fixed budget of rounds, we are asked to provide a recommendation about the best option at the end of the identification process. We propose two algorithms to tackle the above-mentioned setting, namely R-UCBE, which resorts to a UCB-like approach, and R-SR, which employs a successive reject procedure. Then, we prove that, with a sufficiently large budget, they provide guarantees on the probability of properly identifying the optimal option at the end of the learning process and on the simple regret. Furthermore, we derive a lower bound on the error probability, matched by our R-SR (up to constants), and illustrate how the need for a sufficiently large budget is unavoidable in the SRB setting. Finally, we numerically validate the proposed algorithms in both synthetic and realistic environments.} }
Endnote
%0 Conference Paper %T Best Arm Identification for Stochastic Rising Bandits %A Marco Mussi %A Alessandro Montenegro %A Francesco Trovò %A Marcello Restelli %A Alberto Maria Metelli %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-mussi24b %I PMLR %P 36953--36989 %U https://proceedings.mlr.press/v235/mussi24b.html %V 235 %X Stochastic Rising Bandits (SRBs) model sequential decision-making problems in which the expected reward of the available options increases every time they are selected. This setting captures a wide range of scenarios in which the available options are learning entities whose performance improves (in expectation) over time (e.g., online best model selection). While previous works addressed the regret minimization problem, this paper focuses on the fixed-budget Best Arm Identification (BAI) problem for SRBs. In this scenario, given a fixed budget of rounds, we are asked to provide a recommendation about the best option at the end of the identification process. We propose two algorithms to tackle the above-mentioned setting, namely R-UCBE, which resorts to a UCB-like approach, and R-SR, which employs a successive reject procedure. Then, we prove that, with a sufficiently large budget, they provide guarantees on the probability of properly identifying the optimal option at the end of the learning process and on the simple regret. Furthermore, we derive a lower bound on the error probability, matched by our R-SR (up to constants), and illustrate how the need for a sufficiently large budget is unavoidable in the SRB setting. Finally, we numerically validate the proposed algorithms in both synthetic and realistic environments.
APA
Mussi, M., Montenegro, A., Trovò, F., Restelli, M. & Metelli, A.M.. (2024). Best Arm Identification for Stochastic Rising Bandits. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:36953-36989 Available from https://proceedings.mlr.press/v235/mussi24b.html.

Related Material