Test-Time Regret Minimization in Meta Reinforcement Learning

Mirco Mutti, Aviv Tamar
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:37016-37040, 2024.

Abstract

Meta reinforcement learning sets a distribution over a set of tasks on which the agent can train at will, then is asked to learn an optimal policy for any test task efficiently. In this paper, we consider a finite set of tasks modeled through Markov decision processes with various dynamics. We assume to have endured a long training phase, from which the set of tasks is perfectly recovered, and we focus on regret minimization against the optimal policy in the unknown test task. Under a separation condition that states the existence of a state-action pair revealing a task against another, Chen et al. (2022) show that $O(M^2 \log(H))$ regret can be achieved, where $M, H$ are the number of tasks in the set and test episodes, respectively. In our first contribution, we demonstrate that the latter rate is nearly optimal by developing a novel lower bound for test-time regret minimization under separation, showing that a linear dependence with $M$ is unavoidable. Then, we present a family of stronger yet reasonable assumptions beyond separation, which we call strong identifiability, enabling algorithms achieving fast rates $\log (H)$ and sublinear dependence with $M$ simultaneously. Our paper provides a new understanding of the statistical barriers of test-time regret minimization and when fast rates can be achieved.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-mutti24a, title = {Test-Time Regret Minimization in Meta Reinforcement Learning}, author = {Mutti, Mirco and Tamar, Aviv}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {37016--37040}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/mutti24a/mutti24a.pdf}, url = {https://proceedings.mlr.press/v235/mutti24a.html}, abstract = {Meta reinforcement learning sets a distribution over a set of tasks on which the agent can train at will, then is asked to learn an optimal policy for any test task efficiently. In this paper, we consider a finite set of tasks modeled through Markov decision processes with various dynamics. We assume to have endured a long training phase, from which the set of tasks is perfectly recovered, and we focus on regret minimization against the optimal policy in the unknown test task. Under a separation condition that states the existence of a state-action pair revealing a task against another, Chen et al. (2022) show that $O(M^2 \log(H))$ regret can be achieved, where $M, H$ are the number of tasks in the set and test episodes, respectively. In our first contribution, we demonstrate that the latter rate is nearly optimal by developing a novel lower bound for test-time regret minimization under separation, showing that a linear dependence with $M$ is unavoidable. Then, we present a family of stronger yet reasonable assumptions beyond separation, which we call strong identifiability, enabling algorithms achieving fast rates $\log (H)$ and sublinear dependence with $M$ simultaneously. Our paper provides a new understanding of the statistical barriers of test-time regret minimization and when fast rates can be achieved.} }
Endnote
%0 Conference Paper %T Test-Time Regret Minimization in Meta Reinforcement Learning %A Mirco Mutti %A Aviv Tamar %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-mutti24a %I PMLR %P 37016--37040 %U https://proceedings.mlr.press/v235/mutti24a.html %V 235 %X Meta reinforcement learning sets a distribution over a set of tasks on which the agent can train at will, then is asked to learn an optimal policy for any test task efficiently. In this paper, we consider a finite set of tasks modeled through Markov decision processes with various dynamics. We assume to have endured a long training phase, from which the set of tasks is perfectly recovered, and we focus on regret minimization against the optimal policy in the unknown test task. Under a separation condition that states the existence of a state-action pair revealing a task against another, Chen et al. (2022) show that $O(M^2 \log(H))$ regret can be achieved, where $M, H$ are the number of tasks in the set and test episodes, respectively. In our first contribution, we demonstrate that the latter rate is nearly optimal by developing a novel lower bound for test-time regret minimization under separation, showing that a linear dependence with $M$ is unavoidable. Then, we present a family of stronger yet reasonable assumptions beyond separation, which we call strong identifiability, enabling algorithms achieving fast rates $\log (H)$ and sublinear dependence with $M$ simultaneously. Our paper provides a new understanding of the statistical barriers of test-time regret minimization and when fast rates can be achieved.
APA
Mutti, M. & Tamar, A.. (2024). Test-Time Regret Minimization in Meta Reinforcement Learning. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:37016-37040 Available from https://proceedings.mlr.press/v235/mutti24a.html.

Related Material