Detecting Influence Structures in Multi-Agent Reinforcement Learning

Fabian Raoul Pieroth, Katherine Fitch, Lenz Belzner
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:40740-40761, 2024.

Abstract

We consider the problem of quantifying the amount of influence one agent can exert on another in the setting of multi-agent reinforcement learning (MARL). As a step towards a unified approach to express agents’ interdependencies, we introduce the total and state influence measurement functions. Both of these are valid for all common MARL systems, such as the discounted reward setting. Additionally, we propose novel quantities, called the total impact measurement (TIM) and state impact measurement (SIM), that characterize one agent’s influence on another by the maximum impact it can have on the other agents’ expected returns and represent instances of impact measurement functions in the average reward setting. Furthermore, we provide approximation algorithms for TIM and SIM with simultaneously learning approximations of agents’ expected returns, error bounds, stability analyses under changes of the policies, and convergence guarantees. The approximation algorithm relies only on observing other agents’ actions and is, other than that, fully decentralized. Through empirical studies, we validate our approach’s effectiveness in identifying intricate influence structures in complex interactions. Our work appears to be the first study of determining influence structures in the multi-agent average reward setting with convergence guarantees.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-pieroth24a, title = {Detecting Influence Structures in Multi-Agent Reinforcement Learning}, author = {Pieroth, Fabian Raoul and Fitch, Katherine and Belzner, Lenz}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {40740--40761}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/pieroth24a/pieroth24a.pdf}, url = {https://proceedings.mlr.press/v235/pieroth24a.html}, abstract = {We consider the problem of quantifying the amount of influence one agent can exert on another in the setting of multi-agent reinforcement learning (MARL). As a step towards a unified approach to express agents’ interdependencies, we introduce the total and state influence measurement functions. Both of these are valid for all common MARL systems, such as the discounted reward setting. Additionally, we propose novel quantities, called the total impact measurement (TIM) and state impact measurement (SIM), that characterize one agent’s influence on another by the maximum impact it can have on the other agents’ expected returns and represent instances of impact measurement functions in the average reward setting. Furthermore, we provide approximation algorithms for TIM and SIM with simultaneously learning approximations of agents’ expected returns, error bounds, stability analyses under changes of the policies, and convergence guarantees. The approximation algorithm relies only on observing other agents’ actions and is, other than that, fully decentralized. Through empirical studies, we validate our approach’s effectiveness in identifying intricate influence structures in complex interactions. Our work appears to be the first study of determining influence structures in the multi-agent average reward setting with convergence guarantees.} }
Endnote
%0 Conference Paper %T Detecting Influence Structures in Multi-Agent Reinforcement Learning %A Fabian Raoul Pieroth %A Katherine Fitch %A Lenz Belzner %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-pieroth24a %I PMLR %P 40740--40761 %U https://proceedings.mlr.press/v235/pieroth24a.html %V 235 %X We consider the problem of quantifying the amount of influence one agent can exert on another in the setting of multi-agent reinforcement learning (MARL). As a step towards a unified approach to express agents’ interdependencies, we introduce the total and state influence measurement functions. Both of these are valid for all common MARL systems, such as the discounted reward setting. Additionally, we propose novel quantities, called the total impact measurement (TIM) and state impact measurement (SIM), that characterize one agent’s influence on another by the maximum impact it can have on the other agents’ expected returns and represent instances of impact measurement functions in the average reward setting. Furthermore, we provide approximation algorithms for TIM and SIM with simultaneously learning approximations of agents’ expected returns, error bounds, stability analyses under changes of the policies, and convergence guarantees. The approximation algorithm relies only on observing other agents’ actions and is, other than that, fully decentralized. Through empirical studies, we validate our approach’s effectiveness in identifying intricate influence structures in complex interactions. Our work appears to be the first study of determining influence structures in the multi-agent average reward setting with convergence guarantees.
APA
Pieroth, F.R., Fitch, K. & Belzner, L.. (2024). Detecting Influence Structures in Multi-Agent Reinforcement Learning. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:40740-40761 Available from https://proceedings.mlr.press/v235/pieroth24a.html.

Related Material