Learning Multiple Secrets in Mastermind

Milind Prabhu, David Woodruff
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:41039-41051, 2024.

Abstract

In the Generalized Mastermind problem, there is an unknown subset $H$ of the hypercube 0,1$^d$ containing $n$ points. The goal is to learn $H$ by making a few queries to an oracle which given a point $q$ in 0,1$^d$, returns the point in $H$ nearest to $q$. We give a two-round adaptive algorithm for this problem that learns $H$ while making at most $\exp(\widetilde{O}(\sqrt{d \log n}))$. Furthermore, we show that any $r$-round adaptive randomized algorithm that learns $H$ with constant probability must make $\exp(\Omega(d^{3^{-(r-1)}}))$ queries even when the input has poly$(d)$ points; thus, any poly$(d)$ query algorithm must necessarily use $\Omega(\log \log d)$ rounds of adaptivity. We give optimal query complexity bounds for the variant of the problem where queries are allowed to be from 0,1,2$^d$. We also study a continuous variant of the problem in which $H$ is a subset of unit vectors in $\mathbb{R}^d$ and one can query unit vectors in $\mathbb{R}^d$. For this setting, we give a $O(n^{\lfloor d/2 \rfloor})$ query deterministic algorithm to learn the hidden set of points.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-prabhu24a, title = {Learning Multiple Secrets in Mastermind}, author = {Prabhu, Milind and Woodruff, David}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {41039--41051}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/prabhu24a/prabhu24a.pdf}, url = {https://proceedings.mlr.press/v235/prabhu24a.html}, abstract = {In the Generalized Mastermind problem, there is an unknown subset $H$ of the hypercube 0,1$^d$ containing $n$ points. The goal is to learn $H$ by making a few queries to an oracle which given a point $q$ in 0,1$^d$, returns the point in $H$ nearest to $q$. We give a two-round adaptive algorithm for this problem that learns $H$ while making at most $\exp(\widetilde{O}(\sqrt{d \log n}))$. Furthermore, we show that any $r$-round adaptive randomized algorithm that learns $H$ with constant probability must make $\exp(\Omega(d^{3^{-(r-1)}}))$ queries even when the input has poly$(d)$ points; thus, any poly$(d)$ query algorithm must necessarily use $\Omega(\log \log d)$ rounds of adaptivity. We give optimal query complexity bounds for the variant of the problem where queries are allowed to be from 0,1,2$^d$. We also study a continuous variant of the problem in which $H$ is a subset of unit vectors in $\mathbb{R}^d$ and one can query unit vectors in $\mathbb{R}^d$. For this setting, we give a $O(n^{\lfloor d/2 \rfloor})$ query deterministic algorithm to learn the hidden set of points.} }
Endnote
%0 Conference Paper %T Learning Multiple Secrets in Mastermind %A Milind Prabhu %A David Woodruff %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-prabhu24a %I PMLR %P 41039--41051 %U https://proceedings.mlr.press/v235/prabhu24a.html %V 235 %X In the Generalized Mastermind problem, there is an unknown subset $H$ of the hypercube 0,1$^d$ containing $n$ points. The goal is to learn $H$ by making a few queries to an oracle which given a point $q$ in 0,1$^d$, returns the point in $H$ nearest to $q$. We give a two-round adaptive algorithm for this problem that learns $H$ while making at most $\exp(\widetilde{O}(\sqrt{d \log n}))$. Furthermore, we show that any $r$-round adaptive randomized algorithm that learns $H$ with constant probability must make $\exp(\Omega(d^{3^{-(r-1)}}))$ queries even when the input has poly$(d)$ points; thus, any poly$(d)$ query algorithm must necessarily use $\Omega(\log \log d)$ rounds of adaptivity. We give optimal query complexity bounds for the variant of the problem where queries are allowed to be from 0,1,2$^d$. We also study a continuous variant of the problem in which $H$ is a subset of unit vectors in $\mathbb{R}^d$ and one can query unit vectors in $\mathbb{R}^d$. For this setting, we give a $O(n^{\lfloor d/2 \rfloor})$ query deterministic algorithm to learn the hidden set of points.
APA
Prabhu, M. & Woodruff, D.. (2024). Learning Multiple Secrets in Mastermind. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:41039-41051 Available from https://proceedings.mlr.press/v235/prabhu24a.html.

Related Material