On the Minimal Degree Bias in Generalization on the Unseen for non-Boolean Functions

Denys Pushkin, Raphaël Berthier, Emmanuel Abbe
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:41256-41279, 2024.

Abstract

We investigate the out-of-domain generalization of random feature (RF) models and Transformers. We first prove that in the ‘generalization on the unseen (GOTU)’ setting, where training data is fully seen in some part of the domain but testing is made on another part, and for RF models in the small feature regime, the convergence takes place to interpolators of minimal degree as in the Boolean case (Abbe et al., 2023). We then consider the sparse target regime and explain how this regime relates to the small feature regime, but with a different regularization term that can alter the picture in the non-Boolean case. We show two different outcomes for the sparse regime with q-ary data tokens: (1) if the data is embedded with roots of unities, then a min-degree interpolator is learned like in the Boolean case for RF models, (2) if the data is not embedded as such, e.g., simply as integers, then RF models and Transformers may not learn minimal degree interpolators. This shows that the Boolean setting and its roots of unities generalization are special cases where the minimal degree interpolator offers a rare characterization of how learning takes place. For more general integer and real-valued settings, a more nuanced picture remains to be fully characterized.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-pushkin24a, title = {On the Minimal Degree Bias in Generalization on the Unseen for non-Boolean Functions}, author = {Pushkin, Denys and Berthier, Rapha\"{e}l and Abbe, Emmanuel}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {41256--41279}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/pushkin24a/pushkin24a.pdf}, url = {https://proceedings.mlr.press/v235/pushkin24a.html}, abstract = {We investigate the out-of-domain generalization of random feature (RF) models and Transformers. We first prove that in the ‘generalization on the unseen (GOTU)’ setting, where training data is fully seen in some part of the domain but testing is made on another part, and for RF models in the small feature regime, the convergence takes place to interpolators of minimal degree as in the Boolean case (Abbe et al., 2023). We then consider the sparse target regime and explain how this regime relates to the small feature regime, but with a different regularization term that can alter the picture in the non-Boolean case. We show two different outcomes for the sparse regime with q-ary data tokens: (1) if the data is embedded with roots of unities, then a min-degree interpolator is learned like in the Boolean case for RF models, (2) if the data is not embedded as such, e.g., simply as integers, then RF models and Transformers may not learn minimal degree interpolators. This shows that the Boolean setting and its roots of unities generalization are special cases where the minimal degree interpolator offers a rare characterization of how learning takes place. For more general integer and real-valued settings, a more nuanced picture remains to be fully characterized.} }
Endnote
%0 Conference Paper %T On the Minimal Degree Bias in Generalization on the Unseen for non-Boolean Functions %A Denys Pushkin %A Raphaël Berthier %A Emmanuel Abbe %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-pushkin24a %I PMLR %P 41256--41279 %U https://proceedings.mlr.press/v235/pushkin24a.html %V 235 %X We investigate the out-of-domain generalization of random feature (RF) models and Transformers. We first prove that in the ‘generalization on the unseen (GOTU)’ setting, where training data is fully seen in some part of the domain but testing is made on another part, and for RF models in the small feature regime, the convergence takes place to interpolators of minimal degree as in the Boolean case (Abbe et al., 2023). We then consider the sparse target regime and explain how this regime relates to the small feature regime, but with a different regularization term that can alter the picture in the non-Boolean case. We show two different outcomes for the sparse regime with q-ary data tokens: (1) if the data is embedded with roots of unities, then a min-degree interpolator is learned like in the Boolean case for RF models, (2) if the data is not embedded as such, e.g., simply as integers, then RF models and Transformers may not learn minimal degree interpolators. This shows that the Boolean setting and its roots of unities generalization are special cases where the minimal degree interpolator offers a rare characterization of how learning takes place. For more general integer and real-valued settings, a more nuanced picture remains to be fully characterized.
APA
Pushkin, D., Berthier, R. & Abbe, E.. (2024). On the Minimal Degree Bias in Generalization on the Unseen for non-Boolean Functions. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:41256-41279 Available from https://proceedings.mlr.press/v235/pushkin24a.html.

Related Material