One-Shot Strategic Classification Under Unknown Costs

Elan Rosenfeld, Nir Rosenfeld
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:42719-42741, 2024.

Abstract

The goal of strategic classification is to learn decision rules which are robust to strategic input manipulation. Earlier works assume that these responses are known; while some recent works handle unknown responses, they exclusively study online settings with repeated model deployments. But there are many domains – particularly in public policy, a common motivating use case – where multiple deployments are infeasible, or where even one bad round is unacceptable. To address this gap, we initiate the formal study of one-shot strategic classification under unknown responses, which requires committing to a single classifier once. Focusing on uncertainty in the users’ cost function, we begin by proving that for a broad class of costs, even a small mis-estimation of the true cost can entail trivial accuracy in the worst case. In light of this, we frame the task as a minimax problem, aiming to minimize worst-case risk over an uncertainty set of costs. We design efficient algorithms for both the full-batch and stochastic settings, which we prove converge (offline) to the minimax solution at the rate of $\tilde{\mathcal{O}}(T^{-\frac{1}{2}})$. Our analysis reveals important structure stemming from strategic responses, particularly the value of dual norm regularization with respect to the cost function.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-rosenfeld24a, title = {One-Shot Strategic Classification Under Unknown Costs}, author = {Rosenfeld, Elan and Rosenfeld, Nir}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {42719--42741}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/rosenfeld24a/rosenfeld24a.pdf}, url = {https://proceedings.mlr.press/v235/rosenfeld24a.html}, abstract = {The goal of strategic classification is to learn decision rules which are robust to strategic input manipulation. Earlier works assume that these responses are known; while some recent works handle unknown responses, they exclusively study online settings with repeated model deployments. But there are many domains – particularly in public policy, a common motivating use case – where multiple deployments are infeasible, or where even one bad round is unacceptable. To address this gap, we initiate the formal study of one-shot strategic classification under unknown responses, which requires committing to a single classifier once. Focusing on uncertainty in the users’ cost function, we begin by proving that for a broad class of costs, even a small mis-estimation of the true cost can entail trivial accuracy in the worst case. In light of this, we frame the task as a minimax problem, aiming to minimize worst-case risk over an uncertainty set of costs. We design efficient algorithms for both the full-batch and stochastic settings, which we prove converge (offline) to the minimax solution at the rate of $\tilde{\mathcal{O}}(T^{-\frac{1}{2}})$. Our analysis reveals important structure stemming from strategic responses, particularly the value of dual norm regularization with respect to the cost function.} }
Endnote
%0 Conference Paper %T One-Shot Strategic Classification Under Unknown Costs %A Elan Rosenfeld %A Nir Rosenfeld %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-rosenfeld24a %I PMLR %P 42719--42741 %U https://proceedings.mlr.press/v235/rosenfeld24a.html %V 235 %X The goal of strategic classification is to learn decision rules which are robust to strategic input manipulation. Earlier works assume that these responses are known; while some recent works handle unknown responses, they exclusively study online settings with repeated model deployments. But there are many domains – particularly in public policy, a common motivating use case – where multiple deployments are infeasible, or where even one bad round is unacceptable. To address this gap, we initiate the formal study of one-shot strategic classification under unknown responses, which requires committing to a single classifier once. Focusing on uncertainty in the users’ cost function, we begin by proving that for a broad class of costs, even a small mis-estimation of the true cost can entail trivial accuracy in the worst case. In light of this, we frame the task as a minimax problem, aiming to minimize worst-case risk over an uncertainty set of costs. We design efficient algorithms for both the full-batch and stochastic settings, which we prove converge (offline) to the minimax solution at the rate of $\tilde{\mathcal{O}}(T^{-\frac{1}{2}})$. Our analysis reveals important structure stemming from strategic responses, particularly the value of dual norm regularization with respect to the cost function.
APA
Rosenfeld, E. & Rosenfeld, N.. (2024). One-Shot Strategic Classification Under Unknown Costs. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:42719-42741 Available from https://proceedings.mlr.press/v235/rosenfeld24a.html.

Related Material