Embarrassingly Parallel GFlowNets

Tiago Silva, Luiz Max Carvalho, Amauri H Souza, Samuel Kaski, Diego Mesquita
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:45406-45431, 2024.

Abstract

GFlowNets are a promising alternative to MCMC sampling for discrete compositional random variables. Training GFlowNets requires repeated evaluations of the unnormalized target distribution, or reward function. However, for large-scale posterior sampling, this may be prohibitive since it incurs traversing the data several times. Moreover, if the data are distributed across clients, employing standard GFlowNets leads to intensive client-server communication. To alleviate both these issues, we propose embarrassingly parallel GFlowNet (EP-GFlowNet). EP-GFlowNet is a provably correct divide-and-conquer method to sample from product distributions of the form $R(\cdot) \propto R_1(\cdot) ... R_N(\cdot)$ — e.g., in parallel or federated Bayes, where each $R_n$ is a local posterior defined on a data partition. First, in parallel, we train a local GFlowNet targeting each $R_n$ and send the resulting models to the server. Then, the server learns a global GFlowNet by enforcing our newly proposed aggregating balance condition, requiring a single communication step. Importantly, EP-GFlowNets can also be applied to multi-objective optimization and model reuse. Our experiments illustrate the effectiveness of EP-GFlowNets on multiple tasks, including parallel Bayesian phylogenetics, multi-objective multiset and sequence generation, and federated Bayesian structure learning.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-silva24a, title = {Embarrassingly Parallel {GF}low{N}ets}, author = {Silva, Tiago and Carvalho, Luiz Max and Souza, Amauri H and Kaski, Samuel and Mesquita, Diego}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {45406--45431}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/silva24a/silva24a.pdf}, url = {https://proceedings.mlr.press/v235/silva24a.html}, abstract = {GFlowNets are a promising alternative to MCMC sampling for discrete compositional random variables. Training GFlowNets requires repeated evaluations of the unnormalized target distribution, or reward function. However, for large-scale posterior sampling, this may be prohibitive since it incurs traversing the data several times. Moreover, if the data are distributed across clients, employing standard GFlowNets leads to intensive client-server communication. To alleviate both these issues, we propose embarrassingly parallel GFlowNet (EP-GFlowNet). EP-GFlowNet is a provably correct divide-and-conquer method to sample from product distributions of the form $R(\cdot) \propto R_1(\cdot) ... R_N(\cdot)$ — e.g., in parallel or federated Bayes, where each $R_n$ is a local posterior defined on a data partition. First, in parallel, we train a local GFlowNet targeting each $R_n$ and send the resulting models to the server. Then, the server learns a global GFlowNet by enforcing our newly proposed aggregating balance condition, requiring a single communication step. Importantly, EP-GFlowNets can also be applied to multi-objective optimization and model reuse. Our experiments illustrate the effectiveness of EP-GFlowNets on multiple tasks, including parallel Bayesian phylogenetics, multi-objective multiset and sequence generation, and federated Bayesian structure learning.} }
Endnote
%0 Conference Paper %T Embarrassingly Parallel GFlowNets %A Tiago Silva %A Luiz Max Carvalho %A Amauri H Souza %A Samuel Kaski %A Diego Mesquita %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-silva24a %I PMLR %P 45406--45431 %U https://proceedings.mlr.press/v235/silva24a.html %V 235 %X GFlowNets are a promising alternative to MCMC sampling for discrete compositional random variables. Training GFlowNets requires repeated evaluations of the unnormalized target distribution, or reward function. However, for large-scale posterior sampling, this may be prohibitive since it incurs traversing the data several times. Moreover, if the data are distributed across clients, employing standard GFlowNets leads to intensive client-server communication. To alleviate both these issues, we propose embarrassingly parallel GFlowNet (EP-GFlowNet). EP-GFlowNet is a provably correct divide-and-conquer method to sample from product distributions of the form $R(\cdot) \propto R_1(\cdot) ... R_N(\cdot)$ — e.g., in parallel or federated Bayes, where each $R_n$ is a local posterior defined on a data partition. First, in parallel, we train a local GFlowNet targeting each $R_n$ and send the resulting models to the server. Then, the server learns a global GFlowNet by enforcing our newly proposed aggregating balance condition, requiring a single communication step. Importantly, EP-GFlowNets can also be applied to multi-objective optimization and model reuse. Our experiments illustrate the effectiveness of EP-GFlowNets on multiple tasks, including parallel Bayesian phylogenetics, multi-objective multiset and sequence generation, and federated Bayesian structure learning.
APA
Silva, T., Carvalho, L.M., Souza, A.H., Kaski, S. & Mesquita, D.. (2024). Embarrassingly Parallel GFlowNets. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:45406-45431 Available from https://proceedings.mlr.press/v235/silva24a.html.

Related Material