Non-stationary Online Convex Optimization with Arbitrary Delays

Yuanyu Wan, Chang Yao, Mingli Song, Lijun Zhang
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:49991-50011, 2024.

Abstract

Online convex optimization (OCO) with arbitrary delays, in which gradients or other information of functions could be arbitrarily delayed, has received increasing attention recently. Different from previous studies that focus on stationary environments, this paper investigates the delayed OCO in non-stationary environments, and aims to minimize the dynamic regret with respect to any sequence of comparators. To this end, we first propose a simple algorithm, namely DOGD, which performs a gradient descent step for each delayed gradient according to their arrival order. Despite its simplicity, our novel analysis shows that the dynamic regret of DOGD can be automatically bounded by $O(\sqrt{\bar{d}T}(P_T+1))$ under mild assumptions, and $O(\sqrt{dT}(P_T+1))$ in the worst case, where $\bar{d}$ and $d$ denote the average and maximum delay respectively, $T$ is the time horizon, and $P_T$ is the path-length of comparators. Furthermore, we develop an improved algorithm, which reduces those dynamic regret bounds achieved by DOGD to $O(\sqrt{\bar{d}T(P_T+1)})$ and $O(\sqrt{dT(P_T+1)})$, respectively. The key idea is to run multiple DOGD with different learning rates, and utilize a meta-algorithm to track the best one based on their delayed performance. Finally, we demonstrate that our improved algorithm is optimal in the worst case by deriving a matching lower bound.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-wan24h, title = {Non-stationary Online Convex Optimization with Arbitrary Delays}, author = {Wan, Yuanyu and Yao, Chang and Song, Mingli and Zhang, Lijun}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {49991--50011}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/wan24h/wan24h.pdf}, url = {https://proceedings.mlr.press/v235/wan24h.html}, abstract = {Online convex optimization (OCO) with arbitrary delays, in which gradients or other information of functions could be arbitrarily delayed, has received increasing attention recently. Different from previous studies that focus on stationary environments, this paper investigates the delayed OCO in non-stationary environments, and aims to minimize the dynamic regret with respect to any sequence of comparators. To this end, we first propose a simple algorithm, namely DOGD, which performs a gradient descent step for each delayed gradient according to their arrival order. Despite its simplicity, our novel analysis shows that the dynamic regret of DOGD can be automatically bounded by $O(\sqrt{\bar{d}T}(P_T+1))$ under mild assumptions, and $O(\sqrt{dT}(P_T+1))$ in the worst case, where $\bar{d}$ and $d$ denote the average and maximum delay respectively, $T$ is the time horizon, and $P_T$ is the path-length of comparators. Furthermore, we develop an improved algorithm, which reduces those dynamic regret bounds achieved by DOGD to $O(\sqrt{\bar{d}T(P_T+1)})$ and $O(\sqrt{dT(P_T+1)})$, respectively. The key idea is to run multiple DOGD with different learning rates, and utilize a meta-algorithm to track the best one based on their delayed performance. Finally, we demonstrate that our improved algorithm is optimal in the worst case by deriving a matching lower bound.} }
Endnote
%0 Conference Paper %T Non-stationary Online Convex Optimization with Arbitrary Delays %A Yuanyu Wan %A Chang Yao %A Mingli Song %A Lijun Zhang %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-wan24h %I PMLR %P 49991--50011 %U https://proceedings.mlr.press/v235/wan24h.html %V 235 %X Online convex optimization (OCO) with arbitrary delays, in which gradients or other information of functions could be arbitrarily delayed, has received increasing attention recently. Different from previous studies that focus on stationary environments, this paper investigates the delayed OCO in non-stationary environments, and aims to minimize the dynamic regret with respect to any sequence of comparators. To this end, we first propose a simple algorithm, namely DOGD, which performs a gradient descent step for each delayed gradient according to their arrival order. Despite its simplicity, our novel analysis shows that the dynamic regret of DOGD can be automatically bounded by $O(\sqrt{\bar{d}T}(P_T+1))$ under mild assumptions, and $O(\sqrt{dT}(P_T+1))$ in the worst case, where $\bar{d}$ and $d$ denote the average and maximum delay respectively, $T$ is the time horizon, and $P_T$ is the path-length of comparators. Furthermore, we develop an improved algorithm, which reduces those dynamic regret bounds achieved by DOGD to $O(\sqrt{\bar{d}T(P_T+1)})$ and $O(\sqrt{dT(P_T+1)})$, respectively. The key idea is to run multiple DOGD with different learning rates, and utilize a meta-algorithm to track the best one based on their delayed performance. Finally, we demonstrate that our improved algorithm is optimal in the worst case by deriving a matching lower bound.
APA
Wan, Y., Yao, C., Song, M. & Zhang, L.. (2024). Non-stationary Online Convex Optimization with Arbitrary Delays. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:49991-50011 Available from https://proceedings.mlr.press/v235/wan24h.html.

Related Material