Probabilistic Constrained Reinforcement Learning with Formal Interpretability

Yanran Wang, Qiuchen Qian, David Boyle
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:51303-51327, 2024.

Abstract

Reinforcement learning can provide effective reasoning for sequential decision-making problems with variable dynamics. Such reasoning in practical implementation, however, poses a persistent challenge in interpreting the reward function and the corresponding optimal policy. Consequently, representing sequential decision-making problems as probabilistic inference can have considerable value, as, in principle, the inference offers diverse and powerful mathematical tools to infer the stochastic dynamics whilst suggesting a probabilistic interpretation of policy optimization. In this study, we propose a novel Adaptive Wasserstein Variational Optimization, namely AWaVO, to tackle these interpretability challenges. Our approach uses formal methods to achieve the interpretability: convergence guarantee, training transparency, and intrinsic decision-interpretation. To demonstrate its practicality, we showcase guaranteed interpretability including a global convergence rate $\Theta(1/\sqrt{T})$ not only in simulation but also in real-world quadrotor tasks. In comparison with state-of-the-art benchmarks, including TRPO-IPO, PCPO, and CRPO, we empirically verify that AWaVO offers a reasonable trade-off between high performance and sufficient interpretability.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-wang24bf, title = {Probabilistic Constrained Reinforcement Learning with Formal Interpretability}, author = {Wang, Yanran and Qian, Qiuchen and Boyle, David}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {51303--51327}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/wang24bf/wang24bf.pdf}, url = {https://proceedings.mlr.press/v235/wang24bf.html}, abstract = {Reinforcement learning can provide effective reasoning for sequential decision-making problems with variable dynamics. Such reasoning in practical implementation, however, poses a persistent challenge in interpreting the reward function and the corresponding optimal policy. Consequently, representing sequential decision-making problems as probabilistic inference can have considerable value, as, in principle, the inference offers diverse and powerful mathematical tools to infer the stochastic dynamics whilst suggesting a probabilistic interpretation of policy optimization. In this study, we propose a novel Adaptive Wasserstein Variational Optimization, namely AWaVO, to tackle these interpretability challenges. Our approach uses formal methods to achieve the interpretability: convergence guarantee, training transparency, and intrinsic decision-interpretation. To demonstrate its practicality, we showcase guaranteed interpretability including a global convergence rate $\Theta(1/\sqrt{T})$ not only in simulation but also in real-world quadrotor tasks. In comparison with state-of-the-art benchmarks, including TRPO-IPO, PCPO, and CRPO, we empirically verify that AWaVO offers a reasonable trade-off between high performance and sufficient interpretability.} }
Endnote
%0 Conference Paper %T Probabilistic Constrained Reinforcement Learning with Formal Interpretability %A Yanran Wang %A Qiuchen Qian %A David Boyle %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-wang24bf %I PMLR %P 51303--51327 %U https://proceedings.mlr.press/v235/wang24bf.html %V 235 %X Reinforcement learning can provide effective reasoning for sequential decision-making problems with variable dynamics. Such reasoning in practical implementation, however, poses a persistent challenge in interpreting the reward function and the corresponding optimal policy. Consequently, representing sequential decision-making problems as probabilistic inference can have considerable value, as, in principle, the inference offers diverse and powerful mathematical tools to infer the stochastic dynamics whilst suggesting a probabilistic interpretation of policy optimization. In this study, we propose a novel Adaptive Wasserstein Variational Optimization, namely AWaVO, to tackle these interpretability challenges. Our approach uses formal methods to achieve the interpretability: convergence guarantee, training transparency, and intrinsic decision-interpretation. To demonstrate its practicality, we showcase guaranteed interpretability including a global convergence rate $\Theta(1/\sqrt{T})$ not only in simulation but also in real-world quadrotor tasks. In comparison with state-of-the-art benchmarks, including TRPO-IPO, PCPO, and CRPO, we empirically verify that AWaVO offers a reasonable trade-off between high performance and sufficient interpretability.
APA
Wang, Y., Qian, Q. & Boyle, D.. (2024). Probabilistic Constrained Reinforcement Learning with Formal Interpretability. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:51303-51327 Available from https://proceedings.mlr.press/v235/wang24bf.html.

Related Material