An Empirical Study of Realized GNN Expressiveness

Yanbo Wang, Muhan Zhang
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:52134-52155, 2024.

Abstract

Research on the theoretical expressiveness of Graph Neural Networks (GNNs) has developed rapidly, and many methods have been proposed to enhance the expressiveness. However, most methods do not have a uniform expressiveness measure except for a few that strictly follow the $k$-dimensional Weisfeiler-Lehman ($k$-WL) test hierarchy, leading to difficulties in quantitatively comparing their expressiveness. Previous research has attempted to use datasets for measurement, but facing problems with difficulty (any model surpassing 1-WL has nearly 100% accuracy), granularity (models tend to be either 100% correct or near random guess), and scale (only several essentially different graphs involved). To address these limitations, we study the realized expressive power that a practical model instance can achieve using a novel expressiveness dataset, BREC, which poses greater difficulty (with up to 4-WL-indistinguishable graphs), finer granularity (enabling comparison of models between 1-WL and 3-WL), a larger scale (consisting of 800 1-WL-indistinguishable graphs that are non-isomorphic to each other). We synthetically test 23 models with higher-than-1-WL expressiveness on BREC. Our experiment gives the first thorough measurement of the realized expressiveness of those state-of-the-art beyond-1-WL GNN models and reveals the gap between theoretical and realized expressiveness. Dataset and evaluation codes are released at: https://github.com/GraphPKU/BREC.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-wang24cl, title = {An Empirical Study of Realized {GNN} Expressiveness}, author = {Wang, Yanbo and Zhang, Muhan}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {52134--52155}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/wang24cl/wang24cl.pdf}, url = {https://proceedings.mlr.press/v235/wang24cl.html}, abstract = {Research on the theoretical expressiveness of Graph Neural Networks (GNNs) has developed rapidly, and many methods have been proposed to enhance the expressiveness. However, most methods do not have a uniform expressiveness measure except for a few that strictly follow the $k$-dimensional Weisfeiler-Lehman ($k$-WL) test hierarchy, leading to difficulties in quantitatively comparing their expressiveness. Previous research has attempted to use datasets for measurement, but facing problems with difficulty (any model surpassing 1-WL has nearly 100% accuracy), granularity (models tend to be either 100% correct or near random guess), and scale (only several essentially different graphs involved). To address these limitations, we study the realized expressive power that a practical model instance can achieve using a novel expressiveness dataset, BREC, which poses greater difficulty (with up to 4-WL-indistinguishable graphs), finer granularity (enabling comparison of models between 1-WL and 3-WL), a larger scale (consisting of 800 1-WL-indistinguishable graphs that are non-isomorphic to each other). We synthetically test 23 models with higher-than-1-WL expressiveness on BREC. Our experiment gives the first thorough measurement of the realized expressiveness of those state-of-the-art beyond-1-WL GNN models and reveals the gap between theoretical and realized expressiveness. Dataset and evaluation codes are released at: https://github.com/GraphPKU/BREC.} }
Endnote
%0 Conference Paper %T An Empirical Study of Realized GNN Expressiveness %A Yanbo Wang %A Muhan Zhang %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-wang24cl %I PMLR %P 52134--52155 %U https://proceedings.mlr.press/v235/wang24cl.html %V 235 %X Research on the theoretical expressiveness of Graph Neural Networks (GNNs) has developed rapidly, and many methods have been proposed to enhance the expressiveness. However, most methods do not have a uniform expressiveness measure except for a few that strictly follow the $k$-dimensional Weisfeiler-Lehman ($k$-WL) test hierarchy, leading to difficulties in quantitatively comparing their expressiveness. Previous research has attempted to use datasets for measurement, but facing problems with difficulty (any model surpassing 1-WL has nearly 100% accuracy), granularity (models tend to be either 100% correct or near random guess), and scale (only several essentially different graphs involved). To address these limitations, we study the realized expressive power that a practical model instance can achieve using a novel expressiveness dataset, BREC, which poses greater difficulty (with up to 4-WL-indistinguishable graphs), finer granularity (enabling comparison of models between 1-WL and 3-WL), a larger scale (consisting of 800 1-WL-indistinguishable graphs that are non-isomorphic to each other). We synthetically test 23 models with higher-than-1-WL expressiveness on BREC. Our experiment gives the first thorough measurement of the realized expressiveness of those state-of-the-art beyond-1-WL GNN models and reveals the gap between theoretical and realized expressiveness. Dataset and evaluation codes are released at: https://github.com/GraphPKU/BREC.
APA
Wang, Y. & Zhang, M.. (2024). An Empirical Study of Realized GNN Expressiveness. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:52134-52155 Available from https://proceedings.mlr.press/v235/wang24cl.html.

Related Material