Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

Thomas Wedenig, Rishub Nagpal, Gaëtan Cassiers, Stefan Mangard, Robert Peharz
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:52472-52483, 2024.

Abstract

Detecting weaknesses in cryptographic algorithms is of utmost importance for designing secure information systems. The state-of-the-art soft analytical side-channel attack (SASCA) uses physical leakage information to make probabilistic predictions about intermediate computations and combines these "guesses" with the known algorithmic logic to compute the posterior distribution over the key. This attack is commonly performed via loopy belief propagation, which, however, lacks guarantees in terms of convergence and inference quality. In this paper, we develop a fast and exact inference method for SASCA, denoted as ExSASCA, by leveraging knowledge compilation and tractable probabilistic circuits. When attacking the Advanced Encryption Standard (AES), the most widely used encryption algorithm to date, ExSASCA outperforms SASCA by more than 31% top-1 success rate absolute. By leveraging sparse belief messages, this performance is achieved with little more computational cost than SASCA, and about 3 orders of magnitude less than exact inference via exhaustive enumeration. Even with dense belief messages, ExSASCA still uses 6 times less computations than exhaustive inference.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-wedenig24a, title = {Exact Soft Analytical Side-Channel Attacks using Tractable Circuits}, author = {Wedenig, Thomas and Nagpal, Rishub and Cassiers, Ga\"{e}tan and Mangard, Stefan and Peharz, Robert}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {52472--52483}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/wedenig24a/wedenig24a.pdf}, url = {https://proceedings.mlr.press/v235/wedenig24a.html}, abstract = {Detecting weaknesses in cryptographic algorithms is of utmost importance for designing secure information systems. The state-of-the-art soft analytical side-channel attack (SASCA) uses physical leakage information to make probabilistic predictions about intermediate computations and combines these "guesses" with the known algorithmic logic to compute the posterior distribution over the key. This attack is commonly performed via loopy belief propagation, which, however, lacks guarantees in terms of convergence and inference quality. In this paper, we develop a fast and exact inference method for SASCA, denoted as ExSASCA, by leveraging knowledge compilation and tractable probabilistic circuits. When attacking the Advanced Encryption Standard (AES), the most widely used encryption algorithm to date, ExSASCA outperforms SASCA by more than 31% top-1 success rate absolute. By leveraging sparse belief messages, this performance is achieved with little more computational cost than SASCA, and about 3 orders of magnitude less than exact inference via exhaustive enumeration. Even with dense belief messages, ExSASCA still uses 6 times less computations than exhaustive inference.} }
Endnote
%0 Conference Paper %T Exact Soft Analytical Side-Channel Attacks using Tractable Circuits %A Thomas Wedenig %A Rishub Nagpal %A Gaëtan Cassiers %A Stefan Mangard %A Robert Peharz %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-wedenig24a %I PMLR %P 52472--52483 %U https://proceedings.mlr.press/v235/wedenig24a.html %V 235 %X Detecting weaknesses in cryptographic algorithms is of utmost importance for designing secure information systems. The state-of-the-art soft analytical side-channel attack (SASCA) uses physical leakage information to make probabilistic predictions about intermediate computations and combines these "guesses" with the known algorithmic logic to compute the posterior distribution over the key. This attack is commonly performed via loopy belief propagation, which, however, lacks guarantees in terms of convergence and inference quality. In this paper, we develop a fast and exact inference method for SASCA, denoted as ExSASCA, by leveraging knowledge compilation and tractable probabilistic circuits. When attacking the Advanced Encryption Standard (AES), the most widely used encryption algorithm to date, ExSASCA outperforms SASCA by more than 31% top-1 success rate absolute. By leveraging sparse belief messages, this performance is achieved with little more computational cost than SASCA, and about 3 orders of magnitude less than exact inference via exhaustive enumeration. Even with dense belief messages, ExSASCA still uses 6 times less computations than exhaustive inference.
APA
Wedenig, T., Nagpal, R., Cassiers, G., Mangard, S. & Peharz, R.. (2024). Exact Soft Analytical Side-Channel Attacks using Tractable Circuits. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:52472-52483 Available from https://proceedings.mlr.press/v235/wedenig24a.html.

Related Material